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Abstract

The linear nonoscillatory stability of a horizontal vapor layer resting on a heated plate below
a layer of its liquid is studied. The liquid is bounded above by a rigid plate that is colder
than the lower wall. At the plates, either a heat flux or a temperature is kept constant. The
phases are assumed to be incompressible fluids with different physical properties. At their
interface, phase change is induced by perturbations, gravity and capillary effects are taken
into account. Exact neutral stability conditions are derived, and are examined numerically
and in the long-wave approximation. The results show that the arrangement can be linearly
stable to nonoscillatory perturbations when both phases are in thin layers. The mechanism of
stabilization is described. The stability conditions are formulated in terms of the thickness of -
the layers and some characteristic length scales.
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1 Introduction

A horizontal interface between two motionless incompressible fluids with less dense lower fluid is
unstable. The mechanism which tends to deform it is the well-known Rayleigh — Taylor instability
(Rayleigh 1900, Taylor 1950). Interaction of this gravity instability with different physical mecha-
nisms have been intensively studied over the past decades (the literature is reviewed in the recent
work by Kull 1991). In particular, there have been revealed and described mechanisms that damp
and prevent the Rayleigh — Taylor instability.

Renardy (1985) studied the linear stability of plane Cuette flow of two immiscible fluids in two
layers. Computing the eigenvalues numerically, she has found that the flow with the more dense
fluid on top can be stable if the lower fluid is in a thin layer. The stabilization occurs when the
liquid in the thin layer is the less viscous (Renardy 1987). In the Bénard problem where two layers
with slightly different physical properties of fluids are bounded by free boundaries, the motionless
state with the thin lower layer and the more dense fluid on top can be stabilized when the thermal
conductivity of the lower fluid is less than that of the upper one (Renardy 1986). Stabilization
due to the effects of stratification for viscosity or thermal conductivity by reducing the thickness
of one layer was called the ”thin-layer effect” (Hooper 1985, Joseph & Renardy 1992).



Surprising results on interactions between the phase change and gravity mechanisms have been
obtained by Busse & Schubert 1971 in their modeling of convecting medium in planetary interi-
ors and atmospheres by two;phases with equal '-viscosities;’, thermal diffusivities, slightly different
densities, and a release of laﬁent heat at the phase separating boundary. Such a univariant phase
transition was involved in the Rayleighlf— Bénard'stability problem. f)epending on the temperature
gradient field, the influence of the phase change can be stabilizing or destabilizing. A motionless
state with the denser phase below and lighter phase above can be unstable while it can be stable
with the heavier phase above and the lighter below.

Some kind of thin-layer effect occurs in the model in which the influence of the phase trans-
formation on the Rayleigh — Taylor instability is described for incompressible inviscid fluids with
different properties (Hsieh 1972). Assuming a constant temperature difference be held between
the rigid boundary plates, Hsieh found that the phase change effect is stabilizing when the vapor
is hotter than the liquid. In case of infinitely deep liquid and very thin vapor layer, the growth
rate of the Rayleigh — Taylor instability may be greatly reduced at large temperature gradients.
Application of Hsieh’s results to the problem on film boiling was discussed by Dhir & Lienhard
(1972). The film boiling regime is characterized by existence of a vapor layer between heated
wall and liquid. At the phase dividing boundary, waves periodically grow and collapse to release
bubbles. Dhir & Lienhard have analyzed Hsieh’s general dispersion relation for a system at low
pressure (the density of the vapor is much less than that of the liquid) and a vapor layer that is
not very thin. They showed that no thermal effects did influence the Rayleigh — Taylor instability.

An interesting effect of thin fluid layer was found by Huang & Joseph (1992) in the problem
on stability of a motionless liquid-vapor system confined between heated horizontal plates. Both
phases are incompressible viscous fluids. Vapor layer lies above and the Rayleigh — Taylor instability
does not appear. The plates are at constant temperatures and the upper one, adjacent to the
vapor film, is hotter. Analyzing a linear stability problem numerically, Huang & Joseph found
an instability arising as overstability. They performed an energy analysis and showed that the
instability was due to the phase change occurring at the perturbed interface. With very thick or
very thin vapor layer the arrangement was, however, stable.

The effect analogy to that revealed for a very thin vapor layer by Huang & Joseph was found
by Badratinova, Colinet, Hennenberg & Legros (1996a, 1996b) and by Badratinova (1996) in
problems with a semi-infinite liquid phase being over the vapor layer. The system is heated from
the bottom wall which is at a constant temperature or at a constant heat flux. The problem is
studied with taking account of the thermocapillary and thermodynamic non-equilibrium effects at
the perturbed interface. At the interface, the phases are in thermal equilibrium. The condition
of the thermodynamic non-equilibrium is written as the condition of proportionality of the mass
fux across the interface to the difference between the chemical potentials of the phases. The cases
when the liquid and vapor phases are in the thermodynamic equilibrium with respect to each other
(equality of chemical potentials) and when there is no mass transfer across the interface (liquid-
gas system) are considered as two limiting cases of the model, corresponding to infinite and zero
values of the proportionality coefficient, respectively. The analysis of nonoscillatory perturbations
reveals that the gravity mechanism is inactive when the vapor layer is sufficiently thin: in the
liquid-gas system, there exists a thermocapillary instability with wave length much less than that
of the Rayleigh — Taylor instability, while the rest state of the liquid-vapor system is stable to
nonoscillatory perturbations. In both cases, the dominating mechanisms are thermal dissipation
in the liquid and viscous dissipation in the lower (gas or vapor) phase.

In the present work, a linear nonoscillatory stability is examined for a rest state of liquid and
vapor phases located in layers between two horizontal plates from which the lower plate is hotter



than the upper one. Each plate is kept either at a constant temperature or at a constant heat
flux. Hence, the problem is considered for four different thermal boundary conditions for all of
which the heat is transferred through the two-layer system from the lower plate to the upper one.
The phases are incompressible viscous fluids. The vapor layer lies below the liquid one. Along the
interface, the conditions of the thermal and the thermodynamic equilibrium between phases are
posed. Effects of thin vapor and of thin liquid layer are studied.

2 Governing Equations and Basic State

In this section the set of governing equations is presented which will be used in the linear stability
analysis for the equilibrium state of heated vapor-liquid system. The fluids lie in the (z,z) plane
in layers between parallel rigid plates located at z = ~d; and z = dj. Subscripts "1’ and ’2’ will
be used respectively for the lower vapor and for the upper liquid phases. The fluids have constant
densities p; (j = 1,2), viscosities n; (kinematic viscosities v; = 7;/p;), thermal diffusivities X; and
thermal conductivities A;. The location of the liquid-vapor interface is given by z — {(z,t) = 0.
In the equilibrium state, the phase interface is defined by the equation z = 0 and is at constant
saturation temperature To. The coefficient of surface tension acting at the interface z — ((x,t) = 0
is denoted by o and assumed to be constant. The velocities are denoted by v; (v; = (uj,wj)), the
pressures by p; and the temperatures by T;. The two-fluid layer is heated from the lower plate.
Four kind of thermal boundary conditions will be considered: the plates z = —d;, z = d» are
kept at different constant temperatures Ty, Tow (T1w > To > Tw), the upper plate is kept at a
constant temperature Ty (T1 > Tp) and the lower one is at a constant heat flux g, the upper
plate is at a constant heat flux g while the lower one is at a constant temperature Tby, (T, < To),
both plates are kept at a given heat flux ¢. In fluid j, the equations of incompressibility, of motion
and of heat transfer are

V- v; = 0, (1)
dv;
Pigy + (Wi V)v; = =Vp; +n;Vv; + pjg, (2)
oT;
Se+ v VI = V5. @

Here V = (0/0z,0/08z), g = (0,—g) is the gravity acceleration vector, g is a positive constant.
At the plates, no-slip conditions

v1=0 at z=-d;, vy=0 at z=d, (4)

are given and thermal conditions defined as follows:

=Ty, at z=-d;, Th= Tsy, at z=dy (50,)

or
~“M0T[/0z=q at z=-dy, To=Ts,, at z=ds (5b)

or
T =T, at z=-—di, —-A0T3/0z2=q at z=d, (5¢)

or
—/\laTl/Bz =q at z=-di, —/\26T2/6z =q at z=ds. (5d)



At the liquid-vapor interface z = ((z,t), the normal mass flux and the tangential component
of velocity are continuous, i.e.,

pi{v1 —vg) -n=p(ve—vs)-n, (v1—v2)-7=0. (6)

In addition, normal and tangential momentum and energy fluxes must be also continuous there
(Delhaye 1974):

(p1(vy1 —vg) -n)(v1—v2) n+ps—p1 —2n- (D2 —mDi)n =0V -n, (7

(p1(vi —vg) -n) (v1—v2) - T+n- (D2 —mDi)r =0, (8)

(p1(v1 —vs)-n) {L + -21- (vy —vg)-n)’ - %((vz —vy) -n)z}
+ 2V -n—-M\VIi-n + 2n2(D2n) - (v2 — vx) - 2m(D1n) - (vy —vg) = 0. (9)

Here L is the latent heat of vaporization, D; = [(Vv;) + (VvT)]/2 are the rate-of-deformation
tensors, n = (=, V(1 +¢2)~2, 7 = (1,¢.)(1 4 ¢(2)~1/2 are the unit normal and tangent vectors
respectively, vs is the interface velocity (vs -n = —G(1+¢2)71/2) . A set of interfacial boundary
conditions is completed by equality of the temperatures

T' =T, at z=((z,t)
and of the specific chemical potentials u;, us of the phases

pi(Th, ;) = po(T2,p2) at z=((z,t) (10)

which correspondingly express assumptions of the thermal equilibrium and of the thermodynamic
quasi-equilibrium between the phases. Equation (10) is written in analogy with the thermodynamic
equilibrium condition at a curved equilibrium interface between pure phases (Stephan 1992). In
analogy to that case, the local saturation temperature Ts = T7 = T» defined by (10) depends on
two variables p;, p1 — p2 or p2, p1 — p2, with a difference of the pressures playing the role of the
capillary pressure. Condition (10) will be used in a linearized form. In the basic state, condition
(10) is also valid at the phase interface z = 0 which is at the thermal equilibrium, e.g. one has the
equality p1(To, po) = p2(To,po) at z = 0 in which py denotes the equilibrium saturation pressure
corresponding to the saturation temperature Tp. Linearization of equation (10) near the point
(To, po) gives

To(p2 — p1) T
T, = = = ——— — —_ — = s 11
1= =T,=T + oo (p p°)+p2L(p1 p2) at z=((z,1) (11)
(Badratinova, Colinet, Hennenberg & Legros 1996). Formula (11) has been obtained under the
assumption that the local thermodynamic quasi-equilibrium takes place everywhere near the mov-
ing interface. In other words, near the interface, each of the coexisting phases is assumed to be
governed by a Gibbs — Duhem equation, so that the formulas (Prigogine & Defay 1973)

(%) y (%) 1 (%) _<ilil_> — LTy
9p To,po p 7 dp To.po p 1’ oT To,po oT To,po

are valid. Note, that if the density of vapor is much less than of liquid, the last term in (11) is small -
in comparison with the previous one, then equation (11) only slightly differs from the Clausius -
Clapeyron relation for vapor phase.



The basic solution of system (1)~(9), (11) can be written as follows
v, =0, p‘l)=—plgz+po, T10=—/\12+T0 for —d; < z<0,
1

v2 =0, pS=—p2gz+po, T°=—%2+To for 0<z2<ds,

¢=0 (12)

Here and everywhere below, ¢ is assumed to be expressed through the corresponding temperature
difference if the temperature rather than the heat flux is constant at the wall. In this way we
have g = A1 (Tiw ~ To)/d1 = A2(To — Taw)/d2 everywhere in (12) for the boundary condition (5a),
g is replaced by ¢ = A2(Tp — Toy)/d2 only in the formula for T for (5b) and it is replaced by
A1 (T1w —Tp)/dy only in the formula for TP for condition (5¢). In the following, the thicknesses dj,
ds are assumed to be given. The saturation temperature Ty is given also. Under these assumptions,
a temperature or a heat flux value can be given arbitrarily only on one of the plates. As for a
corresponding value in a thermal condition on the other plate, we have to make it agree with the
already given one.

3 Neutrally stable perturbations

The governing equations and the boundary conditions are considered now in a dimensionless form.
Length is scaled on the vapor film thickness d;. The scales x1/dy, d&%/v1, p1xavi/d?, and qd; /)
are chosen for velocity, time, pressure and temperature respectively. The velocities of fluids are
expressed through their stream functions (u; = —0,%;, w; = 0,¥;), the pressures p; are eliminated
and the system is linearized around the basic solution. The functions ¥;, T}, and { then represent
the perturbations from the state of rest. Assuming the perturbations to be expressed in terms of
their normal modes, i.e.,

Y 0 ¥;(2)
T; | =17 | + | i0;(2) | exp(nt + ikz),
¢ 0 ia

the problem is reduced to an eigenvalue problem in which the growth rate n is the unknown
eigenvalue. The consideration is restricted to neutrally stable perturbations, that are modes with
zero growth rate. Therefore, n is set equal to zero. The problem then reduces to a boundary value
problem for the amplitudes v;, 8;,a, and the condition for existence of nontrivial solution defines
the critical condition for onset of instability to perturbations aperiodic in time. In the boundary
value problem, the following dimensionless parameter appear.

do =ds/d; relative thickness of the liquid layer

px = p1/p2 density ratio

Ne =/ (W =1/10) viscosity (kinematic viscosity) ratio
X« = X1/X2 thermal diffusivity ratio

A=A/ thermal conductivity ratio

N, = (pa — p1)gds/oc  Bond number

Ner =mx1/(odr) crispation group

Te = Tov1 /(g1 def) saturation temperature number

Q=gqdi/(p1xaL) dimensionless heat flux or temperature difference



The amplitudes of the stream functions satisfy the equations (D := d/dz)
(D* —k*)%p, =0 for —1<2<0, (D*-Fk)?Ph=0 for 0<z<dy (13)
with the no-slip boundary conditions
Py =Dy =0 at z=-1, ¢Yo=Dypo=0 at z=dp (14)

and the continuity conditions for the tangential component of velocity, mass flux, and for the two
components of momentum, valid at z =0

Dyy = Dyps, 2 = puthn,
3(1 = n7 k2 Dy + 0 D34y — D3py + k(kK? — Np)N'a =0,
0 H(D? + B2 = (D + k). (15)

The equations for amplitudes of temperature perturbation are

(D? —K®)8, = —ki; (1< z2<0),
(D? = k%)0s = —x:Aktp2 (0 < 2 < do). (16)

The respective boundary conditions to be considered are

0;=0 at z2=-1, =0 at z=dp (17a)

or
DO =0 at z=-1, 02=0 at z2=dp (17b)

or
01=0 at z=-1, D6, =0 at z=4dp (17¢)

or
DO =0 at z=-1, D6, =0 at z=dp. (17d)

At the interface z = 0, the temperature continuity and the jump balance of energy yield
6; =6+ (1—X)a, Q(D8;, —A;'Dby) = k). (18)

Here, we find also the z-derivative of the interfacial temperature and make it equal to the gradient
of the saturation temperature. As the pressures are expressed through the stream functions, this
yields

Qk(02 — Aa) = 7. D[D%p; — v D%y — K*(1 — vy He). (19)

4 Conditions for onset of instability

The system of equations (13) to (19) is solved analytically. To present the solution, introduce first
the functions

f() =€/(sinh® £ - £2),  f5(€) = (£ sinh & cosh§)/(sinh’ € — €7),

73(€) = (sinh® & — £° cosh &)/ (sinh £(sinh? £ — £7)),
Fa(€6) = 1+ £(26 — (2 + £%) tanh £)/(sinh® £ — £2) (20)



which will appear either as functions of k or as functions of ky = kdp. Note, that
k=oad,, ko=kdy=ads,
where a is a dimensional wave number. Introduce also the following notations
fi=fi(k), fio=fiolko), i=1,3,4 ff=7fEk), f5=/rEk)

and functions

r=r(k ko) = —(fi/f)1 = v fro/ L)X + 07 i/ £5)7, (1)
Gk, ko) = (07 fro — f)r + v il + f5. (22)
Then, the solution to equations (13)—(15) can be written as
Ny - k2 .
P = am[Ll (kz) cosh kz + Lo (kz) sinh k2],
N, - k? .
Yo = am[Lg (kz) cosh kz + L4(kz) sinh kz] (23)

where L;(kz) are the linear functions in kz presented in Appendix A. The solution of the temper-
ature equations (16) leads to the following. In the case of the boundary conditions (17a), (18) or
(17b), (18) where the upper wall is at a constant temperature, expressions for the temperature can
be written in the form

6; = (C — A.a)(cosh kz — A cothkg sinh kz)
+ A[P3(kz) cosh kz + Pyr(kz)sinh kz],

62 = C(cosh kz — cothko sinh kz) + A[P;(kz) cosh kz + Per(kz) sinh k2], (24)
where
—a Ng — k2
~ U2k2N.,.G(k, ko)
is the amplitude of perturbation to the stream functions (see (23)), P;, Py, P; and Py are the

second order polynomials in kz written in Appendix A.
In (24), the coefficient C is defined by

. [FTT(k, ko) + 4kQ1)(k* — N,) + 8Nk*G(k, ko)(cothk + cothko)
8K3N., Gk, ko) (cothk + A7 Lcothko)

when the lower plate has a fixed temperature, i.e. (17a) applies. For condition (17b), where the
lower plate has a fixed heat flux, C has found to be

o[F" ks ko) + 4kQ)(K? — Ny) + 8N,k Gk, ko) (tanhk + cothko)

A

C =a\. —

(25)

— o) _ 26
C=ak 8k3N,,G(k, ko) (tanhk + A5 cothko) (26)
Here
FTT(k, ko) = (X« f30 — f3)r + XP«(3cothko — kof10) + 3cothk — kfy, (27)
FqT(k, ko) = (X« fa0 — fa)T + X«p«(3cothky — ko f10) + (f3 + 2)tanhk. (28)

Further, when the upper wall is at a constant heat flux, equation (16) is considered with conditions
(17c), (18) or (17d), (18). The solution is ‘
61 = (C — A.a)(cosh kz — A\ *tanhkg sinh kz)

+ A[Ps(kz) cosh kz + Pag(kz)sinh kz],
02 = C(cosh kz — tanhkg sinh kz) + A[P; (kz) cosh kz + Pq(kz) sinh kz]. (29)



Expressions for the polynomials P, and Py, are presented in Appendix A. In the case of an
isothermal lower plate, the coefficient C is given by

[FT4(k, ko) + 4kQ~*)(k? — N,) + 8N, k3G(k, ko) (cothk + tanhko)

(30)

C=ah -
A 8k NGk, ko) (cothk + Ar tanhko)
while in the case the lower plate is at a fixed heat flux we have
99 -11(%2 _ 3
C=ah + S (R, ko) + 4kQ (k2 = N,) + 8N k C_;Ek ko)(tanhk + tanhko)7 (31)
8k3N.,G(k, ko) (tanhk + A7 'tanhk)
where
FT9(k, ko) = (X« fa0 — fa)r + X«ps(f20 + 2)tanhko + 3cothk — kf1, (32)
qu(k, ko) = (X*f4o - f4)7‘ + X«Px (f30 + 2)tanhko + (f3 + 2)tanhk. (33)

To get the conditions for onset of the nonoscillatory instability, we use the interface condition
(19). The right-hand side is calculated with the help of (23). For the left-hand side, we find from
(24), (29) that 8 = C at z = 0. Using expressions (25), (26), (30), (31), we obtain the critical
dependence Q(k) at which the nonoscillatory instability occurs. This dependence is (ko = kdo) :

4(k? — Ny)[re(cothk + A Lcothko) H(k, ko) + k]

=QTT (k) = — 4
Q=@ k) =~ Tk, koy(2 — N,) + 8No 3G (F, ko)(cothk + cothko) (34)
for the case of two isothermal plates,
2 _ -1 :
Q= QT (k)= — T4(k Ng)[re(tanhk + A 1cothko) H (k, ko) + k] (35)
FaT (k, ko) (k2 — N,) + 8N k3G (k, ko) (tanhk + cothko)
for the case where the low plate is at a constant heat flux and the upper is isothermal,
2 _ -1
Q= QTi(k) = — 4(k? — N,)[re(cothk + A *tanhko)H (k, ko) + k] (36)
FTa(k, ko) (k2 — N,) + 8N k3G (k, ko)(cothk + tanhko)
if isothermal is the low plate and at a constant heat flux is the upper one, and
Q=Qu(k) =— 4(k? — N,)[r(tanhk + A tanhko)H (k, ko) + k] (37)
- = " F9a(k, ko) (k2 — Ny) + 8N,-k3G(k, ko) (tanhk + tanhko)
if both plates are at a given heat flux. In (34)—(37), the following notation
H(k, ko) = 26°[(v " — 1+ 07 fro = fi)r + S5 + 007 pu £ (38)

has been introduced. To discuss the physical meaning of the terms appearing in formulas (34)-(37),
we note first that in the key equation (19) the perturbation to the interface temperature, which
is Q(82 — Ara) = Q(C — A.a), is not proportional to Q. That is seen from expressions (25), (26),
(30), (31) whose right-hand sides contain terms proportional to Q1. These terms, appearing due
to discontinuity of the heat flux at the phase change interface (see eq. (18)), reflect influence of
the effect of latent heat release on the interface temperature. In formulas (34)—(37), responsible
for this effect are the terms 4(k? — N,)k in the numerator. The denominator is, therefore, not
proportional to the perturbation of the total surface temperature. Its first term represents the
contribution to the temperature perturbation which is due to the effect of convection occurring in
the contacting layers and associated with gravity waves. This can be recognized with the help of
equation (23) showing that the amplitude of the stream functions is proportional to k%2 — N,. The



second term proportional to N, reflects the perturbation of the surface temperature which is due
to the effect of interface perturbation. In each formula for the critical @, the numerator contains
a term proportional to 7. This term appears because the saturation temperature changes due to
disturbances of the interface.

Note also, that the equations (34)~(37) contain functions which are described by (22), (27),
(28), (32), (33), (38) in terms of the function r defined by (21). The formula r = 1;,/ (k1) =0
can shown to be valid. It shows that r is proportional to the ratio between the tangential and
normal components for the vapor velocity at the interface.

In order to examine the relative importance of the described effects, an analysis of conditions
(34)—(37) will be made in the limiting case of short wavelength and in the following three cases:
the vapor is in a thin layer, the liquid is in a thin layer, both fluids are in thin layers of equal
thickness. The analysis will be accompanied by numerical examples. As a test fluid to which the
results shall be applied, water with its vapor at 373K shall be used. For this system, the physical
parameters are:

o =6x10"*g/em? p2 =0.965g9/cm
v =0.208cm?/s vy = 0.0029cm?/s
x1=02em?/s  x2 =1.685 x 1073 em?/s
A1 = 2.39 x 103 erg/(ecm s K) A2 = 6.8 x 10*erg/(cm s K)
L=226x10"erg/g o = 59.9dynes/cm.

Note finally that, at Q = 0, equations (34)—(37) give one and the same condition: k = k, =
v/Ng- In dimensional form, this condition is expressed by the equality @ = a. = 1/(p — p1)g/c
which is well-known in the theory of the Rayleigh — Taylor instability (see Chandrasekhar 1961).
The critical wave-number o, determines the instability interval (0, a.) for a resting state of two
horizontal layers of isothermal immiscible inviscid fluids of constant density, from which the lower
one is the less dense. The perturbations with the wave number a > a. are stabilized by surface
tension. In Chandrasekhar (1961), the case of two viscous semi-infinite fluids has been considered
also. It was shown that the instability interval is independent of viscosity. Below, in appendix B,
we show that such an independence takes place also in the case where only one fluid is semi-infinite
and the other is in a thin layer.

It is known that the problem on the Rayleigh — Taylor instability vanishes in the marginal
case of zero growth rate: n = 0. That is because it follows from the kinematic condition that the
amplitude a of surface wave is inversely proportional to n (see Appendix B). Strictly speaking,
in order to examine how gravity interacts with other effects, one always has to study oscillatory
modes. However, when examining the dispersion relations for the Rayleigh — Taylor instability of
viscous fluids, one finds that if one formally puts here n = 0, then one obtains, as a solution, the
critical wave number @, (see Chandrasekhar 1961 and Appendix B).

In the problem under consideration, the case @ = 0 corresponds to the case of two isothermal
fluids. If Q = 7. = 0, equations (34)—(37) take the form 4(N, — k?)k = 0, expressing the immisci-
bility condition: 1; = 0 at z = 0. Hence, the critical wave number k. = \/]Tg should be a solution
to the dispersion relation for hydrodynamic problem (13)-(15) with ¢; = 0 at z = 0. Therefore,
we may conclude that for Q = 0, the condition of instability is defined by k£ < k. = \/Fg. In
Appendix B it is shown that all perturbations with wave numbers belonging to the instability
interval (0, k.) grow monotonically. This is also expected to be the case for arrangements with two
finite layers. In the following analysis for non-isothermal cases, if the instability to nonoscillatory



perturbations exists, we shall compare the instability interval with the interval of the Rayleigh -
Taylor instability 0 < k < k..

5 About short waves

To examine a short wave approximation to conditions (34)+(37), we riote first that the leading order
approximations to the functions defined by (20) at the limit £ — oo are f; ~ 0, ff~=1, f3~0,
f+ ~ 1. Using this formulas, we find from (21) that r ~ 0 as k — 00, kg — oo. (This means that
transport of mass in the transverse direction is negligibly small in comparison with the mass transfer
across the interface). Further, at the limit under consideration, G ~ 1+v;!, H ~ 2k3(14+v;1p,),
and all functions defined by (27), (28), (32), (33) have the same approximation ~ 3(Xx.«p« + 1).

From this it follows that all four equations (34)-(37) take the same form

_4k27e(1+ AT (L + puv K + 1]

39
3(X*P* + ].) + 16chr(1 + l/*—l) ( )

We shall show now that the short-wave approximation cannot be realized for physically re-
alistic temperature gradients across the system. It seems, that the dominating terms in (39) are
those representing the effects of saturation temperature perturbation and of surface deformation.
However, we compare the two terms in the numerator of (39) and find that the first term is larger
than the second one if @ > o* = pi/ 2L/ [2ToM v (1+ A7) (14 pov71)]Y/2. Analogously, we find that
the second term in the denominator becomes larger than the first one for a > o™ = 30/(16m1x1)-
For water system at 373K, to the values a*,a** there correspond wavelengths that are respectively
equal to 10~%cm and 2 x 10~Scm. For the wavelength equal to 10~%cm, we calculate from (39)
the vertical temperature gradient in the vapor ¢/A; and find that it is equal to 6.1 x 10° K/em ! If
one neglects in (39) the first term in the numerator and the second term in the denominator, then
the parameter Q is proportional to the wave number k. For short waves, @ is large. Even for the
wavelength equal to lcm, equation (39) leads to the critical value g/A; = 9000 K /cm which is large
to be considered as physically realistic. Therefore, the analysis of short waves predicts that the
depth of the fluids is an important factor affecting the stability to nonoscillatory perturbations.

6 Long-wave asymptotics, numerical samples

Thin vapor layer
Let both phases be of finite depth. Let also the depth of the vapor be small compared to that
of the liquid phase: d; < d. Equations (34)—(37) will be examined now in such a long-wave
limit where k — 0, kg — 0, but ko > k. Here, the inequality ko > k is equivalent to the above
assumption d; < dz (dp > 1). In order to get a first-order approximation to each term in equations
(34)-(37), we use for (21) the following asymptotic expressions f1(§) ~ 3/€% —2/5, € ~6/€,
2 (&) ~ =2/¢, f3(€) ~ €2/5, fa(€) ~ £2/3. We use also cothé ~ 1/€ + £/3. Further, taking into
account order of magnitudes of the physical parameters in the test system ” water- steam at 373K,
we assume that
px <1, nMudo=0(1) (or nudo> 1), xudg>1.

Then, we get the approximations

. 3 3(L+4nidgh) L. 3(L+4ncdyY)
2k(1+ntdyt)’ 2k3(1 4+ tdgt)’ 1+ 9 tdgt

?
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3x.d3k a2k

TT _ pqT X*

FIT=FT ~ — =0, FTI=F9~ 200 (40)
10(1 + 5 tdpt) 2(1 + 7 1dy?)

Using (40), under the assumption N, < 1, we reduce the marginal nonoscillatory stability condi-
tions (34)-(37) to the following approximate forms

_40(F? — No)[37e (1 + A1 dp ) (1 + 4n70dgt) + K2 (1 + 72 dgh)]

Q="K = 3x«d3 [k* — Nyk2 + 40N x71dy 2 (1 + 4ntdyh)] (41)
for the case of two isothermal plates,
Q = QT (k) = - 002 = No)Bre(k? + XM )(1 + 40 dp) + R+ dp )] ()
3x+d3 [k* — Ngk? + 40N 1dy 3 (1 + 4natdyh)]
when the lower plate is at a constant heat flux and the upper one is isothermal,
Q = QTe(k) = — 8K = N)[Bre(1+ A Tdok?) (1 + 4nridy ) + K2(1 + i g )] (43)
X+ 03 (k% — Ngk? + 24N xx 'y 2 (1 + 4ntdg )]
if the lower plate is isothermal and the upper is at a given heat flux,
Q = Qu(k) = - 8 = N)Bre(L+ AT do)(1 + 4 'dy ™) + 1+ 125 '] (44)

X3 [k — Ny + 24N xx1dgt (1 + 4nitdyh)]

if both phases are at a given heat flux. Note that the Bond number can be presented as N, =
(d1/1c0)? where l.o = /0 /[(p2 — p1)g] is the capillary length. The condition N, < 1 is, therefore,
equivalent to the requirement d; < l.,. ’

Consider first equation (41). When k > \/N; , both the numerator and the denominator are
positive, and the function Q77 (k) is negative, i.e. the neutral stability curve Q = Q77 (k) lies in
the negative half-plane @ < 0. Also, one readily obtains that QTT(0) = 7. N,(1+A;1dg')/N.r > 0
and QTT(\/N) = 0.

Let 0 < k < /N,. The numerator is now negative. The denominator, which is a second order
polynomial in k2, can be shown to allow no real roots and be positive when

(d1/67)3(d2/1ca)? < 160(1 + 4971 dgY), (45)

where 13 1/3
m Xz

7= loz — p1)g]' 3

is a characteristic length which characterizes the vapor layer thickness at which the effects of vapor
viscosity and of liquid heat diffusivity are as important as the gravity effect. Thus, under the
validity of (45), the function QTT (k) is positive and the neutral stability curve lies in the positive
half-plane @ > 0.

Such a situation is presented in figure 1 plotted with the help of equation (34). The dot-dashed
curve represents the long-wave approximation. This figure is based on dimensionless parameters
which correspond to the case where the water layer has the thickness d2 = 0.16cm and the
thickness of the vapor layer is d; = 3.6 x 10~2 cm. Note that, for the water system at the earth
gravity acceleration, ér = 6 X 10~%em, I, = 0.252cm and the critical wavelength I, = 27l,,,
corresponding to the critical wave number k. = \/J_\_f; of the Rayleigh-Taylor instability, is equal
to 1.58 cm. Hence, d; = 647 and the value of ds is approximately ten times less than the value
of I.. From figure 1, it is seen that the long-wave approximation (41) describes well the behavior

(46)
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Figure 1: Neutral stability curve when both plates are isothermal, d; = 3.6 x 1073 cm, do = 44.44,

Ny, =2x107% Ngp = 1.2 x 1074, 7, = 4.7 x 1078, p, = 6.2 x 107%, 1, = 0.045, x. = 118.69,
. = 0.035. The dashed curve represents the long-wave approximation.

of the neutral stability curve inside the interval (0, \/N_g_ ) as well as in a vicinity of this interval.
(The discrepancy occurring at k & 0.02 is explained by the fact that to k = 0.02 there corresponds
the value ko = 0.9 which is not small in comparison with unity.) Since at @ = 0 the instability
interval is (0, \/JTg ), and since this instability interval should belong to the domain of instability,
we conclude that the arrangement is unstable for all points (k,Q) lying below the neutral curve.
In the domain above the neutral curve, the arrangement is stable. Figure 1 shows that, with large
positive Q, the arrangement is linearly stable to all monotonic perturbations. Namely, the stability
takes place when the value of @ is larger then the maximal value QTT = 1.7 x 107° reached by
the function QT7 at k = kn, = 0.01. To the value QLT corresponds the temperature difference:
le - To = 0015K

Let 0 <k < \/JTg . but condition (45) be not satisfied. Then, the denominator of (41) can be
shown to allow the two positive roots kI T, k37 defined by

1/2

TT Ng 1/2 -1 3—1 lca,2 6T3
kiz = 5 1F4/1—160(1 + 49, d, )(d—2 )(d—1 ) . 47

For 0 < k < kI7T and for KT <k < \/]Tg, the denominator is positive, and it is negative when
kTT < k < kIT. We expect thus existence of two asymptotes k = k{ * and k = kIT in the picture
of the neutral stability plotted in the plane (k,Q). This is seen in figure 2 to which correspond
the following depths: di = 1567 = 0.009cm, d» = 0.16cm. There exist three neutral stability
curves dividing the plane (k,Q) into four domains. The asymptotes are not plotted, but their
existence is evident. The instability takes place in the only domain, this is that one to which the
interval (0, /N,) of the Rayleigh-Taylor instability belongs. In the case under consideration @ is
positive. As is seen from figure 2 , with large values of @, the instability takes place in the interval
(kTT, kTT) which length is about two times less than that for the interval of the Rayleigh-Taylor
instability. Very long waves are stable. With the help of figures 1 and 2, it was shown that stability
may hold also to perturbations with k < \/]Tg , which are not expected to be stabilized by surface
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Figure 2: Neutral stability curves when both plates are isothermal, d; =9 x 1073 ¢m, dg = 17.78,
Ny, =1.28 x 1073, N = 4.6 x 1073, 7, = 7.5 x 10~°. The parameters px, 7x, X«, As have the same
values as for figure 1. The dashed curves represent the long-wave approximation.

tension. We must, therefore, describe the mechanism which underlies such a stability. With high
positive @, the stability condition is independent of @ : in the case presented in figure 1 it is
described by (45), and in the case shown in figure 2 it is given by the inequality k¥ < kI with k7
determined in (47). In both cases, the condition of stability is described in terms of the thickness
ér. This is more clearly seen when 75, is set equal to zero and the depth d; is assumed to be fixed.
In the first case, the stability condition (45) yields: dy < 160'/387(l.,/d2)2/3. In the second case,
from (47) it follows that the maximal length of the stability interval, equal to (N,/2)'/2, is reached
when d; = 160381 (l.a/d2)?/3. For dy > 160'/387(lco/d2)?/3, increasing d; leads to decrease of
the width of the stability interval and, for d; 3> 160/387(l../d3)?/3, the instability takes place
already in the whole interval (0, /N,). If 67 is equal to zero, there is no stability. The stabilizing
effects are, therefore, those represented in the numerator of expression (46) for ér : the vapor
viscosity and liquid heat diffusivity. However, the mechanism that underlies the stability is the
effect of the phase change.

To explain this, note that, in equations (41)—(44), the viscosity and diffusivity effects are pre-
sented in the last term of the denominator, which reflects the contribution of surface deformation.
These two effects play a stabilizing role, because the last term is positive. We examined also the
stability problem when the phase change is absent (liquid-gas system). We have taken into ac-
count the thermocapillarity and found that the term expressing the surface deformation effect had
negative sign and that, in absence of the phase change, the effect of gas viscosity and of liquid heat
diffusivity led to extension of the instability interval in comparison with the interval (0, /Ny) of
the Rayleigh-Taylor instability. Note, that the problem on the thermocapillary instability is deter-
mined by equations (13) - (18) in which one has to put ¥; = 0 at z = 0 and to take into account
the thermocapillary effect in the last equation (15). When the last equation (15) (used now as the
key equation to derive the neutral stability condition) is omitted, the solution to the problem the
modified problem (13) - (18) is determined by expressions following from (22)-(33) ”in the limit
where the ratio r of tangential to normal component of velocity at z = 0 tends to infinity”. More
precisely, in all functions depending on r, only terms proportional to r have to be conserved. In
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particular, the function G(k, ko) defined by (22) has to be replaced by 1y fio — f1. In the limit
k= 0, kg = 0 (ko > k, the function G(k, ko) behaves asymptotically as —3/k?, i.e., it has the
negative sign, which is opposite to the sign of the asymptotic approximation to G(k, ko) (see (40))
in the case of liquid-vapor system. As is seen from comparison of the neutral stability conditions
(41) - (44) with the original equations (34) - (37), the sign of the last term in the denominator of
expressions (41) - (44) is determined by the sign of the function G(k, ko)-

In the described mechanism, the absolute linear stability to nonoscillatory perturbations is
possible only in the arrangement with a very thin vapor layer. When dy ~ lcq, the thickness of
the vapor layer should not be very large in comparison with the thickness é7 defined by (46). One
can say that, if the thickness of the liquid layer is measured by the capillary length l.,, then, to
formulate the condition for stability, the vapor layer thickness should be measured by the length
6r. In (45), the parameter 77 dy" represents influence of the liquid viscosity. This parameter,
depending on the vapor depth, can be expressed through the lengths l.,, é7 as follows:

ny tdyt = Vr(di/87)(lea/d2), (48)
where Vr is a parameter representing the effect of the liquid viscosity, which is defined by

vp="T0 _ mxy [(p2 — p1)g]"/® (49)
T mla 273 172 )
M lea 7 o1/

For dy ~ l.,, numerical calculations show that, in the case with one neutral stability curve,
such as presented in figure 1, the value of QT _ is well predicted by the long-wave approximation
for all values of di, which are not very close to the critical value at which inequality (45) already
fails (e.g., the denominator of (41) changes sign). In figure 3, a comparison is made for the
curves determined by equations (34) and (41). Here, the value of dy is the same as for figure 1, but
dy = 1367. The value of d;, equal to 7.8 x 10~2 cm, only slightly differs from the value 8.2 x 1073 cem
for which it was found that (34) determines already three neutral stability curves. It is seen that,
for Q, the long-wave approximation predicts a maximal value being 2.5 times larger than the
value obtained from exact equation (34). The discrepancy can be explained by the fact that, in
the denominator of (41), neglected terms of order k% become important. Let d; € do < lcq-
Estimate the left-hand side of (45). Let, for instance, d2 ~ lcq/10, di ~ lco/100. Then, one has
(d1/67)%(d2/1ca)® ~ 10%(l.a/67)® =~ 1.8. Hence, inequality (45) ”effectively” holds, i.e. /, the
left-hand side is much less than the right-hand side. When d; < dy < lq or dy K< da ~ Iz and
(45) "effectively” holds, the values of QIT  are well predicted by the long-wave approximation
(41), and it is possible to find an approximate formula for QLT . To do this, note that, in the
numerator of the right-hand side of (41), the first term in the square brackets is much less then the
second one if k > k* = 31/272/2(1 + A71d5)Y/2(1 + 3/(1 + n.do))'/2. For the water system with
the parameters as in figure 1, k* = 6.8 x 1074, k,, = 1072, so that kn, > k*, and, at k = kn, the
term proportional to 7. gives a small contribution. Neglecting this term, one can readily obtain
the formula for QZT . and write the stability condition in terms of the two inequalities: (45) for
the vapor depth and

40(1 + 07 tdgt)

T _
Q> Qma:z - 3X*d% [160(1 + 4n:1d61)(lca/d2)2(5T/d1)3 - 1] (50)

for the heat flux. As was noted above, for the water system, the value of QTT_ calculated from

the exact solution (34) is equal to 1.7 x 1075, Approximate formula (50) obtained using (40) (and
ignoring the effect of the saturation-temperature perturbation) gives QTT = 1.82 x 1075.
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Figure 3: Comparison of the neutral curve with that one determined by the long-wave approxima-
tion (dashed curve) in the situation close to the criticality at which already three neutral curves
exist. Both plates are isothermal; d; = 7.8x1073 em, dp = 20.51 N, = 9.6x107%, N, = 5.3x10-5,
Te = 9.9 x 107°. The values of p., 7x, X«, A« are the same as for figure 1.

Equations (42)—(44) are seen to be analogous to equation (41) just examined. Therefore, we
present only the conditions of stability to nonoscillatory perturbations, predicted from the long-
wave approximations in the case where requirements (40) are satisfied, 7. = 0, and d; € ds < I q.
These conditions are:

{ (d1/84)%(d2/lca)?® < 160(1 + 4n71dgt)

o _ 40(1+7,1d7 )
Q> Qhar = 3xd2 [160(1+4n5 1 dy ) (lca /d2)2(64/d1)%~1]

(51)

when at the lower wall the heat flux is constant and the upper wall is isothermal,

(d1/67)%(da/lca)® < 96(1 + 477 dy )
0>QT1 = 8(14nItdY) (52)
maz T 5 dZ[96(1+4ns dy 1) (lea /d2)2 (7 /d1)3—1]

when the lower wall is isothermal and the upper one is at a given heat flux,

(d1/8g)%(d2/1ca) < 24(1 + 4n71dy ")
0>0Qu = 8(1+n71d7h) (53)
maz = 3 42 (24(1+47n; Tdy 1) (lea/d2)(84/d1)2 1]

in the case where each wall is kept at a constant heat flux. To the values Q72  and QT there

corresponds the wave number kn, = /N,/2. The maximal value Q%9 is reached at k = 0. In (51)

and (53),
(53) 1/2_1/2

_ h X

= (2 - )97 (54
is a characteristic length which, the same as the length dr, is a characteristic thickness for the
vapor layer, at which the destabilizing gravity effect is already affected by the stabilizing effects
of the vapor viscosity and of the liquid heat diffusivity. In contrast with the length &7 involving
in stability conditions (45), (50) and {52) for the arrangement with the isothermal lower plate,

dq
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the length &, pertains to the cases where the heat flux is constant at the wall contacting with the
vapor layer. In condition (52), the term 7, dy ! that reflects a contribution of the liquid viscosity
effect can be expressed through the lengths lc,, 7 with the help of (48), (49). In (51), (53), one
can express the term n'dy ! through the lengths lcq, &, as follows

ntdgt = Vo(di/8q)(lea/d2) 55
with the parameter
vV, = 2 9 _ nzxé/z[(pz — p1)g]t/* "
! M lea (n1)1/20.3/4

characterizing the liquid viscosity effect. Note that for the water system, 6, = 3 X 10~5 cm. Note
also that the thickness d; is related to dr by

8, = 62112, (57)

In (50) - (53), the inequalities for Q contain terms x+d2 which also can be expressed through relative
thicknesses dy /87 (or d1/68,), da/lce and the ratio d7/l.. (or &g /lco)- Furthermore, in conditions
(51), (53) for which ¢ = const at the lower plate, the parameter Q = qd; /(p1x1L) depends on di,
and it can be replaced by (d; /6,)Q with Q = g6,/ (p1x1L). We can say that stability conditions (45),
(50), (52) or (51), (53) can be described in terms of the Bond number for liquid Nyd = (d2/lca)?,
the gravity parameter

Gr = <d_1)3 _popled o (d_1>“ _ (p2 = p1)godt
or PiViX2 dq pivixs
for vapor, and the ratio dr/leq or d4/lca of the two characteristic lengths.

Assume that the lower plate is isothermal and that, given depths di, d, and a temperature
difference Ty, — T, the stability condition (52) is satisfied. Then, direct comparison of (52) with
condition (45), (50) shows that the latter one is also satisfied. This means that if the arrangement
is stable to perturbations keeping at the upper plate a constant value of the heat flux, then it
is also stable to perturbations under which, at this plate, a constant value is conserved for the
temperature. This statement was confirmed by numerical calculations for the neutral stability
made on base of equations (34), (36). The analogous statement is valid also in the case where at
the lower plate a constant heat-flux condition is imposed (here, condition (51) was shown to follow
from (53) under assumption dy < 4lcs)-

We compare now stability of the arrangements differing in the thermal conditions on the
lower plate with the help of figures 4, 5 plotted for the depths as in figure 1, for ‘which the ar-
rangement with two isothermal plates was stable. Figures 4 and 5 correspond to the case where
the lower plate is at a given heat flux. In figure 4, where the upper plate is isothermal, there
exists inside the interval (0, \/N_g) a wide domain of instability. In figure 5, for which the up-
per wall is at a given heat flux, the instability takes place in the whole interval (0, v/Ny). This
shows that, for the given d;, dz, configuration with the isothermal lower plate is the most sta-
ble. This result valid also for all configurations with d; <« dz < I, follows from that the ratios
of the right-hand sides of (52), (45) to the right-hand sides of (51), (53) (equal respectively to
di/l.e and dyds /12,) are very small. Finally, note that the effect of the surface-temperature
dependence versus pressures of the phases (parameter 7.) on onset of nonoscillatory instabil-
ity was studied numerically. Calculations for a critical dependence Q(k) were performed using
original neutral stability conditions (34) - (37) in a wide range of depths di, d2, di < da, for
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Figure 4: Neutral stability curves for the water system having the same parameters as in figure
1. The only difference from the situation to which figure 1 pertains is in that the lower plate is
at a fixed heat flux rather then at a given temperature. In contrast with figure 1, a domain of
instability exists for all positive Q.
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Figure 5: Neutral stability curves for long waves in the case both plates are at a fixed heat flux.

The depth d; and the parameters do, Ng, Ner, Te, Pxs T, X, A« are as for figure 1. Figure shows
that with any heating from the bottom, the instability interval is the same as in the case of two

isothermal immiscible fluids.
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which a one neutral stability curve exists. Very small depths d; were also considered. No in-
fluence of the parameter 7, on neutral stability curves was found. Since the case d; = d» was
also included, below, in analysis of the case of two layers with equal thicknesses we put 7. = 0.
Two layers of equal thickness
In the case when both phases have one and the same thickness (d; = d; = d), we obtain the
long-wave approximations to (34)—(37) by assuming A, > 1, v« > 1, p. < 1, X« > 1. In the limit
k — 0, keeping a first order approximation to each term in (34)-(37), we obtain from (34)-(36)
the following common form

c1(k? = N,)[3reA 1(1+4n:1)+k2(1+n:1)]

=Q(k,c1,¢2) = — 58
Q=Qkee) 3 [k% = Ngk2 + coNerxz 2 (1 + T3 1)) (58)
for the neutral stability condition. From (37), we obtain
2_N, A7l -1 -1

X (k%2 — Ny +48Ncrx,. ()

In (58) and below we have c; = 2¢c; = 80 for the case where both plates are isothermal and
¢z = ¢; = 40 (cz = ¢; = 24) when the upper (lower) plate is isothermal and the lower (upper) one
is at a given heat flux. Analysis of (58), (59) leads, under additional assumptions 77;* > 1 and
7. = 0, to the nonoscillatory stability conditions

d < dmaz(c2) = (28¢2)'/%9,
0 ci(l+971) (60)
> Qmaz(clyc2) 3x«[(maz(c2)/d)5 1]

and
dy < d¥,, = 3361/35qq,
8(1+n2 %) (61)
{ Q> Qmaw = ST
respectively. In (60), (61)
B 771/5 1/501/5 5 - 771/3X1/3 62)
(o2 = p1)gl?>’ 7 [(p2 — pr)g]' 3.

For the test water system at earth gravity, & = 0.013cm, &,y = 1.7 x 1073 cm. As is seen from (60)
- (62), the stabilizing effects are viscosity and heat diffusivity of liquid.

The formulas
2/5 3/5
Y A (28¢2)/5 8 T lea
m®\ ér 2P\ e )

1/2 1/3
§gq = 336Y/2 ‘sz M lea ) _ 3361/3 01
T O

can be shown to be valid. They show that, in the case under consideration, for all four kinds
of thermal boundary conditions the thm—layer effects ca.n be descnbed in terms of the thickness
or/ 17* % as well as in terms of &,/ 17, 2 Here, the ratio 77,. lea/dT OF 17* lca/dq appears as a dimen-
sionless group characterizing the thin-layer effect. It is interesting to note that, in the case where
the plates are at a given heat flux, it is possible to express the maximal depth d%d,, in terms of
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the thickness dr/ ni/ % only. Also, one can use the capillary length I., as the characteristic length.
In such a case one has 6§ = [, R'/%, 6,4 = l.o R}/?, where

R =01 (07/1ca)® = 071 (8g/1ea)?- (63)

Equations (60)-(61) show that the critical values Qmaqz, Q2%,, above which the arrangement
is stable to nonoscillatory perturbations increase monotonically as the thickness d is increased. For
the case of two isothermal plates, numerical calculations were performed on the base of general
equation (34). The depths d was varied from 10~3cm till the value dper = 0.052¢m at which
existence of a very thin interval of the instability has been found first. (Note, that the approximate
formula (60) gives the maximal depth dmaz = 0.059¢m). The calculations confirm that, increasing
the depth d, QLT grows monotonically. At small depths, the agreement, between numerical and
approximate values for Q .z, determined by (60), is very good. For d = 5 x 10~3cm, 10~ 2¢m,
and d = 2 x 1072¢m, both the numerical and approximate results give Qmaz = 1.16 x 1075,
3.7 x 10™%, and 1.19 x 1072, respectively. To these values of Q. there correspond respectively
the following temperature differences T1,, — Tp : 0.013K, 0.41K, and 13.6K. For d = 3 x 10~ 2¢m
the numerical calculations give @mas = 9.6 x 1072, while the approximate formula (60) predicts
that Qmas = 9.37 x 10~2. However, here the corresponding temperature differences are very large.
For Qmaz = 9.6 x 1072, one has Ty, — Tp = 109K.

Note finally, that one can put the question of stability in the following way. Given the heat
flux number @, under which values of the relative thickness d/dmq. is the arrangement stable? To
answer this question one has to resolve the last inequalities in (60), (61) with respect to d/dma-
Then (61) yields the stability condition d/d%,, < (1+8(1 +n;t)/ (x,Q))_l/ % for the case where
the plates are at a constant heat flux. For the other three kinds of the thermal condition, from (60),
follows the condition d/dmaz(c2) < (1 +c1(1 +n7Y)/ (X*Q))—l/ ®. As the number Q is increased,
the right-hand sides of the last two inequalities increase. Thus, the larger @), the arrangement is
linearly stable to nonoscillatory perturbations in a more wide interval of the relative thickness.

Thin liquid layer

The asymptotic analysis for long waves now will be carried out under the assumption that
the liquid layer is very much thinner than the vapor one. As above, the analysis is performed for
systems whose physical parameters have the same orders of magnitudes as that for the test water
system. We assume therefore

do €1, xupx <1, <1, xutup.=0(1).

For simplicity we assume also v,d% < 1. Then, at the limit ¥ — 0, ko — 0, (k > ko), we obtain
from (21), (22), and (38) the following approximate formulas

3p. 3 3(4v.d3 + p.)

T T o%dy U 2Bund nd

Here the consideration will be made only for two kinds of the thermal boundary conditions. Namely,
the lower plate is assumed to be isothermal while, at the upper plate, the heat-flux or the tem-
perature condition is given. Equations (27) and (32) yield FTT = FT? ~ (3p, + 14do)/(10dp).
Substituting these approximations into (34), (36), under the assumption A\;1d;! > 1, we obtain
the following expressions

40(k? — Np) (372 1dy (4vadd + pu) + vud3k?]
vad3(3p. + 14do) [k* — Nyk? + 120N,rv dg 3 (3p. + 14do)~1]’

QT (k) = -
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40(k? — No)[37. (4vudd + pu) + v.dik?]
Vo2 (3p. + 14do) [k* — Ngk2 + 120N,vi dy?(3p, + 14do) 1]

The functions Q7T and QT? are continuous when the polynomials in k¥? (in the denominators)
allow no positive roots. This is expressed by the conditions

QTUk) = - (64)

Vved3N2(p, + 14do/3) [Ner < 160,  vud3(p. + 14do/3)N; [Ny < 160, (65)

respectively. These conditions can be written correspondingly as follows

4d, o rd N\ rd2\? 14 (di\? (d2\® [ \® [(da\®
‘3‘1‘(@) +<z;:) (@) <160, —3-(,;;) (E) *(z:) (67;) <160, (66)

where
5= p1/4 1/4 1/4 ol/8 5 - 1/3Xi/3 1/3 -
[(p2 — p1)g g/ 7t (p2 — p1) g/
and
5 = 7721’/3Xi/3 " o_ 1/2X1/2

T e — o)l T [(p2 — pr)gol

In figure 6 the neutral curves defined by (34) are plotted for the two cases: di = 0.16cm,
d> = 0.03¢m and d; = 0.16em, d2 = 0.0lcm. In the former case, the first condition (66) is not
satisfied. There exist three neutral curves. Positive @, the instability takes place in the domain
above curve 2, located between curves 1 and 3. The interval of the unstable wave numbers is
almost the same as the interval of the Rayleigh — Taylor instability. For the latter case, the first
condition (66) is satisfied and there exists one neutral curve (curve 4) for which QTT =~ 150. Note
that to the value QTT = 1 there corresponds the temperature difference T3, — To = 1134.7K. For
physically realistic values of T}, — To the parameters Q are very small. Since the instability takes
place below curve 4 and since the parameters Q are small, it appears that the instability interval
practically coincides with the interval of the Rayleigh — Taylor instability.

This is visualized in figure 7 by curve 1, which is curve 4 from figure 6 plotted in a range of small
Q. Curve 2 is plotted for d; = 0.16 cm, d2 = 5 x 10~ *cm. To the maximal value QZT, = 3.5x107?
there corresponds Ty, — Tp = 0.039K. Figures 5, 6 show that, given d;, stable arrangements should
have sufficiently small depths dy. To describe the thin-layer effects, we find first the maximal values
for the functions QT7, QT9. Setting their first derivatives equal to zero, we obtain the equations

(2k? - N,) (1 + Te(4u.dg':gaﬁt}\)]gp.+14do)(3Ng _ 2k2)) +

37e(4vadZ+pa /do) (1 N2u.do(p.+14do/3)) 0 (68)
Auvady 160N~
and
Ve 2 - -
(2K2 = N,) (1 + Zldeeditos/dg)3oo 140 (3, — 2)) )

37e(4vs d3+p. /do) 1— NZv.d3(p.+14d0/3) -0
d 160N,

Valg

for unknown wave numbers kI7 and k1¢ at which the maximal values are reached.
Assume for simplicity do > p.. Let k € (0,/N,), then 0 < 3N, — 2k? < 3N, and the second
term in the brackets multiplying 2k? — N, can be shown to be much less than the first one when

3(4vad} + pu/do)(3ps/do + 14)dz < 160p3x1 L /[ToXa(pz — p1)g]
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Figure 6: Neutral curves in the case the liquid layer is thinner than the vapor layer. Both plates
are isothermal, p, = 6.2 x 1074, n, = 0.045, x. = 118.69, A. = 0.035. Vapor depth d; = 0.16 cm,
Ny =04, N;y =26 x107%, 7, = 2.4 x 107!, Curves 1, 2, and 3 are for the case d» = 0.03 cm.
Curve 4 corresponds to the case dy = 0.01 cm.
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Figure 7: Neutral curves for the water system. Both plates are isothermal. Curve 1 is a part of

curve 4 from figure 6, plotted in a range of small Q. Curve 2 is for d; = 0.16cm, dy = 5x 10~ cm.

The parameters p., 7«, X«, A« are as in the foregoing figures. The parameters Ny, N, and 7. are ’

as in figure 6.
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for the former equation and when
3(4v.d2 + pa/do)(3p./do + 14)d> < 160p3x1L* /[ToM1(p2 — p1)g]

for the latter one. Here, the quantities standing on the right-hand sides are equal, for the water
system, to 1.46 x 10% cm and to 4.15 x 104 em respectively. Hence they are very large and, under
the above assumption v.d3 < 1, the inequalities are satisfied. Neglecting the terms just shown to
be very small, we next estimate the ratio of the last terms on the right-hand side of (68), (69) to
Ny in order to find conditions under which these terms can be neglected also. From (65), it follows
that the absolute value of the terms standing in the large brackets is less than 2. Using this, we
found that the corresponding ratios are very small in comparison with unity when

6(4v.di + pu/do)Toroveo 6(4v,d3 + p./do)ToM Vo0
p1L2(p2 — p1)gd1d3 p1L2(p2 — p1)gdids
»

for equations (68), (69) respectively. Since v.d3 < 1, the last inequalities are equivalent corre-
spondingly to

<1 <1

Torovoo Tolrveo
pL3(py —p1)g’ p1L2(p2 — )9
If we take d; = 0.1cm, then, for the water system, the first inequality is satisfied for d» >
4.61/3 x 10~* em while the second one is valid for all da > p.di = 6 x 107° cm.

For the situation where conditions (70) are not satisfied, the effect of the surface temperature
variation on the neutral stability was studied numerically. When the upper plate is at a given heat
flux, we didn’t find any influence of parameter 7.. When it is isothermal, the most strong deviation
of neutral curves was found for d; = 0.02cm dp = 1073 em. Here, 7, = 1.5 x 107° and the value of
QTT equal to 2.7 x 1073 is about two times larger than the value 1.9 x 10~° obtained for 7. = 0.

When conditions (70) are satisfied, in equations (68), (69) the terms proportional to 7, can
be neglected. Hence, kLT = k17 = N, /2. We find then

T _ 40do QTe_ = 40dy
mazr y mazr — .
3 (2590 —pu - 14do/3) 3 (1890 — p. - 14do/3)

dsd; > 30 ddi > (70)

Q (71)

Assume Q is given. By using (71), the conditions of stability to nonoscillatory perturbations
Q> QTT and Q > QT4 can be written correspondingly as

160N, 40 p. 14 160N, _ 40  p. 14
160N 40 oo 1 10N 2 4P 2 2
diNE T30 T T3 wdN O 3Q do 3 (2)

For physically realistic values of the temperature differences T}, — To, the values of @ are of order
10~4—10~2. Thus, on the right-hand sides of the stability conditions (72), the first term dominates.
The conditions are then simplified to give v,dgNg /Ner < 12Q and v d3NZ /N, < 12Q. The latter
conditions can be written in terms of the characteristic length scales (67) as follows:

i\ [d2\*
(z::) (@) <126

for the case where the upper plate is isothermal and
d\2 (do)\?
(%) () <»e
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7 Discussion and conclusions

We consider liquid and vapor layers having common interface and located between two parallel
plates perpendicular to gravity. We assume either a heat flux transferred across the two-layer
system or a temperature at one of the plates be given and constant. In the latter case, the other
plate is assumed to be at a fixed temperature or at a fixed heat flux. The lighter vapor lies below
and is hotter then the liquid. We use a "two-sided model” in which dynamic and heat transfer
are considered in both layers and are coupled as a consequence of jump-balances of momentum
and energy as well as balances between mass flux, tangential velocities, chemical potentials and
temperatures holding at the interface of the phases. The main purpose is to study a stability of an
equilibrium state in the case where both layers are thin. Therefore, the buoyancy effect is neglected
and the phases are considered as incompressible viscous fluids.

In the equilibrium state, there is no mass transfer across the interface. But disturbances
induce surface gravity waves, phase change and convection associated with them. At the disturbed
interface, there is competition between destabilizing gravity and stabilizing capillary effects. The
effects of viscous and thermal dissipation and the convective heat and energy transfer to the
interface cause the interface-temperature perturbations. The interfacial temperature depends on
the pressures of the phases. Therefore it changes also due the perturbations of the pressures. Their
interaction is affected by the effect of phase transformation. Our aim is to examine influence of
the mentioned physical effects on a stability of the equilibrium state.

Equations (34)—(37) represent the neutral stability conditions derived for common fluids and
arbitrary depth of the layers. They are studied asymptotically in the case of two thin layers, in
which we distinguish the following situations: the vapor layer is much thinner then the liquid layer,
both layers have equal depths, the liquid layer is very thin compared with the vapor layer.

We study the first situation imposing only rather weak requirements on properties of the
fluids, namely, we assume the coefficients of dynamic viscosity and of heat diffusivity of vapor be
not very small compared with those for liquid. Analysis of equations (34)-(37) leads to closed-form
expressions for conditions of linear nonoscillatory stability. The stability is treated as the thin-layer
effect because it is possible only for very small vapor depth. The analysis show that the thin-layer
effect can be described in terms of two characteristic length scales, one of which is the capillary
length. The other length is not so universal as the capillary length in the sense that it is defined by
different expressions ((46), (54)) in the cases differing in the thermal condition at the plate adjacent
to the vapor. While the Bond number, defined in terms of the capillary length, characterizes the
ratio of the capillary to gravity effects acting at the interface, the parameters Gr and G,, defined
with the help of the second length, measure the relative effect of liquid heat diffusivity and vapor
viscosity versus gravity. It appears, that this relative effect depends on the kind of the thermal
condition imposed on the lower plate. For small Bond numbers, the thin-layer effect exists only
if the effects of liquid heat diffusivity and of vapor viscosity dominate in comparison with the
effect of convection associated with gravity waves and the heat flux number is sufficiently large.
We have found that in absence of the phase change, but in presence of the thermocapillary effect,
the liquid diffusivity and vapor viscosity do not stabilize the arrangement. Instead, they increase
the length of the instability interval in comparison with that for the isothermal case. Hence,
the phase change is an important factor for stabilizing the arrangement to linear nonoscillatory
perturbations. Numerical and asymptotic analysis show that the stabilization is possible even with
extremely small heating from below.

Although the stability conditions were obtained in the long-wave approximation where it is
required that both the liquid and vapor layers have a thickness small compared with the capillary
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length, they have shown to be also efficient when the liquid depth is of the same order as the
capillary length. This is seen from results presented in figures 1, 2, 4. Therefore, the parameters
Gr, G4 characterize the thin layer effect for the case d ~ l., also. The analysis of the case
dy > l., was made by Badratinova, Colinet, Hennenberg & Legros (1966a,b). In their analysis for
thin vapor layer below semi-infinite liquid, the parameters Gt and G, were shown to characterize
the stabilizing effects of dissipation in the cases of the isothermal plate and of the plate at a
constant heat flux respectively. From the aforesaid, we conclude that the parameters G, G, (the
lengths d7, &4) pertain specifically to the case where the vapor layer is much thinner than the
liquid layer (which can be thin, thick or infinitely deep).

When the thin liquid and vapor layers have the same thickness and the kinematic viscosity,
heat diffusivity and thermal conductivity coefficients of the vapor are much greater than that of the
liquid, the thin-layer effect have shown to exist for all four kinds of the thermal boundary conditions.
In this case, the stabilizing effects are viscosity and thermal diffusivity of the liquid phase. A linear
stability to nonoscillatory perturbations is only possible when viscous and thermal dissipation in
the liquid layer are sufficiently strong to overcome convection induced by gravity waves. Since
the liquid and vapor layers have the same thickness, the stability conditions (equations (60), (61))
are expressed in terms of only one characteristic thickness. This thickness (4) was found to be
one and the same in the three cases in which one of the plates is isothermal . But it differs from
the thickness (d4,) being a characteristic one for the case of two plates at a constant heat flux
(formula (62)). Here, it is worth to note that the thin-layer effect cannot be described in terms of
the capillary length. If the thickness of the layers is measured by the capillary length, then, for all
four kinds of the thermal boundary conditions, the effects of dissipation are presented by one and
the same dimensionless parameter (formula (63)) characterizing the ratio of ’diffusive thickness’ to
the capillary length.

The asymptotic analysis yields a maximal depth dp.. such that the arrangement with the
fluid depth d > dyn,, cannot be stable. The arrangement is stable when the relative depths d/dmez
belongs to some interval I having the length less than unity. The competition of the stabilizing
and destabilizing effects depends on the heat flux number. As the heat flux number grows, the
interval I gets wider. Its length approaches unity only in the limit @ — co.

In the third situation where the liquid layer is much thinner than the vapor one, consideration
was restricted to the two cases differing only in a thermal condition at the plate adjacent to
the liquid layer. The lower plate was assumed to be isothermal. A thin-layer effect with the
mechanism analogous to that described in the first two situations is established. The basic imposed
requirements are: vapor is less viscous, the ratio of vapor to liquid heat diffusivity mulitiplied by the
ratio of vapor to liquid density is less than unity. For both studied cases, the stabilizing effects are
found to be the liquid viscosity and the vapor heat diffusivity. This is seen from the formulas (67)
determining the characteristic lengths in terms of which the stability conditions are formulated.
In contrast with the two previous situations, dependence of the interfacial temperature versus the
pressure of the fluids cannot be always neglected. With very small depths of the liquid layer, this
effect can give considerable contribution into the values of the maximal heat flux above which the
arrangement is stable.

Oscillatory modes of perturbations remain to be examined. For the situation where the liquid
layer lies below, oscillatory instability due to the phase change was found by Huang & Joseph 1992
in the case of two isothermal plates. However, unstable configurations have shown to be absent
for the arrangements with very thin liquid or very thin vapor layers.
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8 Appendix A

Here, expressions for the functions in kz, appearing in equations (23), (24) and (29) are presented.

Li(kz) = [(1 + fi)r — fF)(kz) + 1,

Ly(kz) = =(for + 1+ fi)(kz) - fir + f3,
Ls(kz) = [(1 + fro)r + pufap)(k2) + pu,

Ly(kz) = (f307 — ps — paf10)(k2) — fror — ps f35.-

/\* *
Pyr(kz) = Py(kz) — _%Ci]ﬂ[(z + kocothko)r + p.(3cothky + ko + 3k6_1)],

Pyr(kz) = Py(kz) + 2N.-k*G(k, ko)cothko / (k% — N,)

_ Xsf10
4k

[(2 + kocothko)r + p.(3cothko + ko + 3k5 1)),

/\:1:* {[(1 + 3f10)r + 3pu Sl (k2) — = (f30r — px — pufr0)(k2)*},

Pa(ke) = 2K ((for — 3p, — pufro)(k2) — [(1 + Fro)r + pu S5 (k2)2),

4k
Palkz) = {[(1+3)r — 3£ 1(ka) + (5 r+ 1+ ) (k) (48) — 205Gk, ko),
g

Py(kz) = Q71 + {xx[(1 + 3f10)7 + 3p. f] — [(1 + 3f1)r — 3£ ]
— (fsr+3+ fi)(k2) — [(1 + fu)r — f](k2)*}/ (4k).

Py(kz) =

AcXs
4k

{f1o(1 + kotanhkg + 2kg tanhko)r
— p«[(f30 + 2)tanhko — 3£55]},

Pyy(kz) = Py(kz) —

Puy(k2) = Py(kz) + 2N.-k2G (k, ko)tanhko /(k* — N,)
- %{ fio(1 + kotanhkg + 2kg *tanhko)r — p.[(fa0 + 2)tanhko — 3£55]}

9 Appendix B

Consider the problem on instability of an equilibrium interface between two viscous, isothermal,
capillary, immiscible fluids from which the more dense fluid is on top. If each fluid occupies a
half plane, the interval of wave numbers with respect to which the equilibrium is unstable does
not depend on viscosity (Chandrasekhar 1961). Disturbances with wave numbers a > a, =
v/(p2 — p1)g/o are stabilized by surface tension. Unstable modes occur only for 0 < a < a. (this
result was derived in Chandrasekhar 1961 for fluids with equal kinematic viscosities).

The purpose here is to prove that the instability interval is also independent of viscosity when
only one fluid is in a half plane while the other one is in a thin layer. This will be shown under
the assumption that the dynamic viscosity for the lower fluid is much less than that for the upper
one, i.e., N, << 1.

Let | denote the thickness of the thin layer, so that I = d; or [ = dy depending on whether
the lower or the upper fluid is of finite thickness. We will use the scales I(length), vy /I(velocity),
12 /vy (pressure). In particular, the wave number « is expressed in dimensionless form as k = al.
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The evolution of normal modes of perturbations is then described by the following equations. The
equations of motion lead to

(D?—F)(D* =k —n)p =0, (D? = k*)(D* —k* —vun)ypp =0 (73)

in fluid 1 and in fluid 2 respectively. At the interface z = 0, conditions of continuity for the
tangential velocity and the kinematic condition give

Dy = Dyp2, na = ki1 = ki (74)
and the balances of the normal and tangential stresses are

0o (D? + E®)p = (D® + k%),
(= pTYn + 3(1 = n71)E%) Dy + 0 D3y — D3¢y — Rpa =0, (75)

where 2 22
R, = k&2 —m)g2 [o -k
pivi /ol
The no-slip condition at the solid plate and the condition on the decay of the disturbance at

zZ — o0 are

Y1 =Dy =0 at z=-1, o=Dipp >0 at z— 0 (76)

in the case where the lower fluid is in a thin layer and
hh=DY=0 at 2z —-00, Yo=Dyp >0 at z=1 (77)

if the upper fluid is in a thin layer.
Derive first the dispersion relation for the eigenvalue problem (73)-(76). The general solution
of equations (73) can be expressed as

¥y = E* exp(—kz) + E? exp(—sz),
¥, = E®sinh kz + E* coshkz + E° sinh s,z + E® cosh s, 2 (78)

where
s=vVk*+vn, s1=vk®+n (Res>0). (79)

Substituting (78) into the interfacial and boundary conditions, we are led to a system of linear
algebraic equations with respect to unknown coefficients E? (j = 1,2, ..,6) and the interfacial wave
amplitude a. From the kinematic condition it follows that a = k(E* + E? + E* + E®)/(2n). With
use of this expression, the amplitude a is excluded. Then, the system can be presented in the form:

kE' + sSE? + kE® +5,E® = 0,
E'+E?>-FE*—E® = 0,
MIPE + 7 (K2 +sHE? - 2KPE'— (K +S3)E° = 0,

R(E! + E* + E* + E%) 4+ p]'nkE' + nkE3+
+(1 - n7Y)K*(KE® + 5, E® — KE* —sE?*) = 0,
—E®sinhk + E*coshk — E®sinhs; + E®coshs; = 0,
kE® coshk + s; E® coshs; — kE*sinh k — s; E®sinhs; = 0. (80)

where R = —Rik/(2n).
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We use the assumption 1 < 7} and write down the determinant of the system. Then, we
convert the determinant into a 3 x 3 one, applying for this the following transformations:

ti={llz=lli=llz; la+lla=lla; lls—Ha=1lle; —lls—1ls}
to={lli+lla=lli; le+llamllz; lls+Ella=lls @7 >>1)}
ts={p7tla+ 1l = lli; 207'K%|la +nllz - s} .

The transformations t; describe algebraic operations with columns, ||; denotes the column j, and
the symbol — shows to which column the result of the operation is placed. With the help of the
described transformation, the conversion procedure can be presented as follows:

k ] k 0 81 0
1 1 0 -1 0 -1
207 k2 297k + p7in 0 —2k? 0 ~2k2 —n
-y
R+n7ks®  R4+97'k%s  nk—n7k® R —-n;1k%s; R
0 0 —sinhk cosh k —sinh s; cosh 81
0 0 kcoshk ~ksinhk sycoshs; —s;sinhs
1 1 k -1 0
n (s + k) 0 2(n7t - 1)k? 0 k% — g2
-n7tks  n-n7'k* 2R+ ks ptk? 0
S]_k(s - k) _ﬁ"l)
0 —k~lsinhk coshk s7'sinhs; coshs;—
—cosh k
0 coshk —ksinh k —cosh s, k sinh k—
—sy sinh sy
pin 0 27 1k? -n
271 k2 (s — k)— n 2R+ 0
—pTink +207 k3 + p7ink
t3
=
sik (s — k)s7 ' sinh s; 57! sinhs;— cosh k+ coshs;—
—k~lsinhk  +ks7'sinhs; —coshk
—{s — k) coshs; cosh k— —ksinh k— k sinh k—
—cosh s; —k cosh 51 —s; sinh sy
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2 k2 (s — k) — p;ink n —Rik + 2071k + prin)nk

(s — k)s7 ! sinh s, + 7" sinh g, — (cosh k + ksy ' sinh s1)n+
sink| +p7l(coshs; —coshk)  —k~'sinhk  +2n7'k*(coshs; — coshk)
~(s — k) cosh s;+ cosh k— —(sinh k + cosh sy )nk+

+p7Y(ksinhk — sy sinhs;)  —coshs;  +2n;'k*(ksinhk — sy sinhs;)

Setting the latter determinant equal to zero, we obtain the dispersion relation

Fi(n, k) = 0 which determines, in the case where the lower fluid has a finite thickness, eigenvalues
n as functions of the wave number k. The next step is to simplify the function Fi(n, k), assuming
the thickness of the lower fluid to be thin. In the limit k — 0, the equation Fj(n, k) = 0 is reduced
to the equality ng/ 2(1/:/ 2 cosh /ng + pzlsinh \/ng) = 0 with np = limg_on. Since this equality
can be satisfied only at no = 0, it follows that lim_o 7 = 0 and hence limg—0 51 = 0. Therefore,
all hyperbolic functions appearing in the latter determinant can be approximated by their Taylor

series. Then, the dispersion relation can be presented as follows:

2 k% (s - k)— n —Ripk+
—p;ink +(2n71k% + pin)nk
1(n, k) (s—k)+271p7n 67n n+n;k*n 0
—(s=k)—-p7ln -2"In —nk — 297 k%*n

The obtained equation can be further reduced to the (n, k) -relationship

36
n :lnk+12—-————>—Rk=0 81
(p stk +4) (81)
valid under the assumption 7;1%k? = O(k) < 1.
In equation (81), n = 0 corresponds to the value Ry = 0 which, in turn, is reached at k = 0
and at k = k. = \/(p2 — p1)g/cl. Show now that, at k > k. the problem under consideration
allows only damped modes. For this purpose, rewrite equation (81) in the form:

36
—Rik/n + pink + 12

nTls=—4-nk+ (82)
and prove that it does not allow any solution with a positive real part. Suppose such a solution
exists, so that (82) is satisfied for a certain n for which Ren > 0. Consider first the last term in (82).
It can be presented as 36(A—iB)/(A2+B?) where A = —RikRen/[(Ren)?+(Imn?)}+p; 'kRen+12,
and B = RikImn/[(Ren)?+ (Imn?)]+p; * kImn are correspondingly the real and imaginary parts of
the denominator. If k > k., one has —Rx > 0. Hence, with Ren > 0, A > 12 and 364/ (A2+B?) <
36/A < 3. Then, from (82), using the obtained estimation for the real part of the last term, we
find that Res < —1 — n-1k < 0. Since in (78), (79) Res is greater than zero, it is clear that, at
k > k., all roots of equation (81) will have a negative real part. This means that, as in the case
of two semi-infinite fluids, unstable modes occur only in the interval 0 < a < a, whose length is
independent of viscosity.

It follows also that, in the case under consideration, all unstable modes grow monotonically.
Indeed, in the instability interval 0 < k < k., the parameter Ry is positive and, from the above
expression for B, it is readily seen that sign(B) = sign(Imn). In (82), the sign of imaginary part of
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the right-hand side is opposite to the sign B and, consequently, to the sign of Imn. The imaginary
part of the left-hand side has, however, the same sign as sign(Imn) because sign(Imn) = sign(Ims?)
and sign(Ims?) = sign(Ims). The latter equality is valid for all complex numbers s with positive
real part.

For the problem with the thin upper layer, the dispersion relation can be found in the same

way. The solution to equations (73)—(75), (77) is now

Y1 = D* exp(kz) + D? exp(s1 2),
¥ = D?sinh kz + D* cosh kz + D®sinh sz + D® cosh sz (83)

where s; and s are determined by (79), a = k(D' + D? + D* + D%)/(2n) and the coefficients D’
satisfy the system of equations:

—kD' - ;D* +kD® +sD° = 0,
D'+D*-p*-DS =
2k*Dt + (k? + s3)D? - 297 k2Dt — 7 (K2 + 52)D8 = 0,
R(D' 4+ D? + D* + D%) + nkD' — p'nkD?*+
+(1 -7 Y)k* (kD! + 5;D* + kD® + sD°%) = 0,
D3sinhk + D*coshk + D°sinh s + D8 coshs = 0,
kD® coshk + sD® coshs + kD*sinh k + sD®sinhs = 0. (84)

By use of equivalent transformations, under the assumption ;! >> 1, the determinant of the
system (84) is reduced to the following one:

20 k% (k — s1) — nk] -p7in —Rrk — (2n7Yk% — n)nk
prl(s1 —k)s~lsinhs— k7 lsinhk—  (coshk + ks~!sinhs)n+
—(cosh k — cosh 5) —s~lsinhs  +2v7'k%(coshk — cosh s)
p7(s1 — k) cosh s— cosh k— (sinh k + cosh s)nk+
—(ksinh k — ssinh s) —coshs  +2v;'k?(ksinhk — ssinhs)

Setting this determinant equal to zero, we obtain the dispersion relation Fy(n,k) = 0 and show
first that, at the limit ¥ — 0, its solution n tends to zero. This also implies lim;_,g s = 0. We
expand next the hyperbolic functions into powers of theirs variables. Then, keeping the leading
order terms, we get the approximation to the dispersion relation

-0 k(207 k(sy — k) + 0] n7'n ~Ryk—
—(2n72k% — n)nk
s =0
Fy(n, k) n; sy —k)+27In 6 1n n
Nyl (s1—k)+n 271n nk

which, for k < 1, is reduced to equation

-2
n(nk + 12971 — 5%17—-_1) — Rpk = 0.
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Analyzing this equation similar to the former case, we prove that, in the case under consideration,
all unstable perturbations grow monotonically and that they have wave numbers belonging to the
interval (0,k.). All perturbations with wave numbers lying outside this interval are stable. For
them, the growth rate n has the negative real part. The dimensional critical wave number a. is
the same as in the case of two semi-infinite fluids.
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