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T he influence of the thermocapillary and phase change effects on the Rayleigh—Taylor
instability of a heated two-layer system has been studied. For a system heated from the
bottom the formulas have been derived for a critical gas or vapor layer thickness below

which the Rayleigh—Taylor mechanism is affected by thermal effects. In a system with very
thin gas layer the Rayleigh—Taylor instability is replaced by the thermocapillary one if the
heat flux, transferred from the bottom wall, is sufficiently high. A motionless state of a very
thin vapor layer can be stabilized by the phase change effect. Thermocapillary oscillatory
instability has been found for large gas layer depths.

1. INTRODUCTION

The most susceptible wavelength of the Rayleigh—Taylor instability [1] is used in
widely known models [2, 3] of the critical heat flux in boiling. In [2] it defines a
distance between rising vapor jets, in [3] — a horizontal dimensions of vapor con-
glomerates located on a flat heater during the developed nucleate boiling. As the
gravity level drops away, the Taylor wavelength becomes very large. For condi-
tions of existing microgravity boiling experiments [4-6] it is several orders larger
than the dimensions of heated plates [7]. As a consequence, the Rayleigh—Taylor
instability is absent, and the model by Zuber [2] cannot longer be used to describe
the transition from nucleate to film boiling observed in microgravity environ-
ments [6]. The model by Haramura and Katto [3] identifies the critical heat flux
phenomenon with the dryout that occurs before the detachment of vapor con-
glomerates in a consequence of evaporation of a liquid macrolayer located be-
neath them. Recent experimental investigations show [8] that in the developed
nucleate boiling with heat flux less than the maximum critical one, the macrolayer
is repeatedly formed on a heater after every process of detachment. The conse-
quence of events is shown in Figure 1 taken from the work [8]. Inside the macro-
layer a number of vapor stems is formed by coalescence of small bubbles nucleating
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Figure 1. Sketch showing behavior of vapor mass and macrolayer.

on a heater after every process of detachment. A distance between vapor stems is
much less than the lateral dimension of hovering above vapor mass. Obviously,
that the location of vapor stems is not defined by Taylor wavelength.

In this work the Rayleigh—Taylor instability is studied in a heated systems at
low Bond numbers, corresponding to low values of gravity acceleration or to
small depths of vapor layer. The focus is on interactions between the Rayleigh—
Taylor, the thermocapillary and phase change mechanisms. In order to isolate
these three interfacial effects, we neglect in the present study the buoyancy forces
arising due to the thermal expansion of fluids.

The Rayleigh—Taylor instability pertains to the isothermal static state of a hori-
zontal fluid layer under a layer of a more dense fluid. If a constant heat flux is
transferred across the interface of fluids, another cause of instability will be a sur-
face tension gradient arising under the perturbations of the basic state (Smith,
[9]). In a heated static system with the lower phase being a vapor one, the men-
tioned two mechanisms will be affected by the phase change occurring along the
perturbed interface. On the basis of existing studies, it is difficult to predict
whether the influence of the phase change is stabilizing or not.

In the work [10] Busse and Schubert obtained an interesting result on stability
of the interface in a system with a heavy phase above. In general, they studied the
Rayleigh—Bénard problem modifying it by involving an univariant phase transi-
tion. Their investigation was directed to applications in geophysical and astro-
physical problems. Therefore, they restricted the consideration to the case with a
small density jump across the phase-separating interface and equal viscosity and
thermal diffusivity coefficients of the phases. In the particular case where the
temperature gradient is nearly-adiabatic and the Rayleigh number is small, Busse
and Schubert showed the stability of the basic state with the heavy phase above.
This result is an example of the stabilizing influence of the phase change mecha-
nism.

Another interesting result was obtained in a recent paper by Huang and Joseph
[11], where the stability was examined for a motionless liquid-vapor system



ON RAYLEIGH-TAYLOR INSTABILITY IN HEATED LIQUID-GAS SYSTEMS 3

coinfined between heated horizontal plates. The heat is transferred from the vapor
to the liquid. Both phases are incompressible viscous fluids. The less dense vapor
phase is above, and the Rayleigh—-Taylor mechanism does not appear. Neglecting
the variation of surface tension with temperature, the authors found the oversta-
bility and showed that it was due to the phase change mechanism. Also, they
found that with very thick or very thin vapor layer, the motionless system was
stable. However, they didn't explain why in these two exceptional cases the phase
change was not able to give rise to the instability.

The important point discussed in the work [11] was concerned with the thermal
boundary conditions at the interface. Two interfacial thermal conditions are re-
quired in the statement of the problem. The authors emphasize that these condi-
tions are unknown. To motivate this they note, in particular, that when the pres-
sure jump exists across the interface one cannot use the Clausius—Clapeyron rela-
tion for both phases together with the condition of temperature continuity at the
interface. The validity of mentioned results have been verified for three cases:
when the water and vapor are at saturation temperature corresponding to their
own pressures and when the temperature is discontinues and the vapor or the wa-
ter is at saturation. 4

In the present work we assume thermal equilibrium, but we take into account
the thermodynamic non-equilibrium effect at the perturbed interface. The well-
known formula for the nonequilibrium phase change rate is the Hertz—Knudsen
equation [12] derived from the kinetic theory of ideal gases. Because in our sta-
bility problem the vapor is assumed to be incompressible, to apply directly to this
formula is incorrect. On the basis of the irreversible thermodynamics approach we
derive the equation for the nonequilibrium mass flux to be used as the interfacial
boundary condition in a statement of a stability problem. This approach allows to
describe the interactions between the thermocapillary and phase change effects in
terms of the phenomenological mass transport coefficient. Comparing the phe-
nomenological mass transfer equation with the Hertz—Knudsen formula, we esti-
mate the order of magnitude of the phenomenological coefficient through the ac-
commodation coefficient. In our approach, the thermodynamic equilibrium con-
dition for the interface is obtained as one that follows in the limiting case of in-
finite value of the phenomenological mass transport coefficient. With zero value
of this coefficient the phase change does not occur, and the results are applied to
the liquid—gas systems.

2. BASIC EQUATIONS

In this section the set of equations that govern the motion of a two-layer system
will be written. The system consists of liquid layer (;(x,y,t)<z<d in contact
with its own vapor occupying the layer —d; < z < ¢(x, , t) (Figure 2). At the rigid
bottom z=-d| two kind of thermal conditions will be considered: a constant

temperature or a constant heat flux. This set-up is used to investigate the influence
of the phase change effect on the coupling between the Marangony-Bénard and
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Figure 2. Physical configuration of liquid—vapor system. Four pair of vectors in the left side show
the direction of motion induced by phase change in the absence of gravity: / — the liquid motion to-
wards the crests, 2 — the liquid motion away from the troughs, 3 — the vapor motion away from the
crests, 4 — the vapor motion towards the troughs.

the Rayleigh—Taylor instability mechanisms. In the basic state no motion exists,
and the phases are separated by a flat interface z=0 across which no net transfer
of matter occurs.

The mass, momentum and energy conservation equations in each bulk are re-
spectively

V-o=0 _ (1)
ov 2

pg+(v-V)v=—Vp+nV v+pg )

O 0.NT =kV?T V=Jz,ii,fi (3)
ot Ox Oy Oz

where p, T'and v = (u,v, w) are the pressure, the temperature and the velocity.
The constant parameters p, 1 and k are respectively the density, the dynamic vis-
cosity and the heat diffusivity. The gravity acceleration vector is g = (0, 0,-— g),
where ¢ is a positive constant. In the following, we will refer to the vapor phase
by the subscript 1, for both physical parameters and the perturbed fields.

At z = —d| the no-slip and thermal conditions are as follows

09,=0, T,=T, [(or A9T/0z=—q) @

where for the first thermal condition T, is the constant wall temperature, for the
second one — ¢ is the constant value of the imposed heat flux. Note, that almost
everywhere below the liquid depth is assumed to be infinite. With finite depth, at
z=d the imposed conditions are as for the perfectly conducting rigid plate.

At the liquid-vapor interface z = &(x,y,t) a continuity of the temperatures and
of the tangential components of velocity is assumed

T=T, (v-9)-1=0 (%)
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Also, the mass, energy, the normal and tangential momentum balances are [13]:

plo-vg)-n=p\(o-v5) n | (6)
H{e+2(o-og)-af ~1[(o-oy)-of }+

+ AVT -n— VT, - n+20(D-n)(v-v5 ) - 20,(D;-n)(v, -05) =0 7)
J(0,-0)-n+p-p,—2n-(nD-nD))-n=cV-n | 8)
J(oy-v)-1+n(nD-nDy) 1=-Vo-1 (9)

Here L is the latent heat of vaporization, D and D; are the rate-of-deformation
tensors, A, A; are the thermal conductivities, n, T are the unit normal and tangen-
tial vectors (Figure 2), 05 is the interface velocity, J is the normal component of
the mass flux vector at the interface. By definition

J=pi(oy-v5) n (10)

The surface tension is assumed to vary linearly with the temperature T:
6 =06, -0,(T —Ty). Here o, is the surface tension at the temperature Ty of the
unperturbed interface z =0; the temperature coefficient of surface tension o, is
assumed to be a positive constant.

The system is not closed yet. One interfacial condition is missing that should
characterize the interface thermodynamic state. The phenomenological expression

J=K(u -p) at z=¢(x,9,t) (1)

is postulated here in accordance with irreversible thermodynamics findings for
particular case of no temperature jump at the interface [14—15] (see also [7]). It
relates the normal mass flux J to the difference between the specific chemical
potentials (T, pl) and (T, p) of the vapor and of the liquid phases. The phe-
nomenological coefficient K, depending [14] on the state of the vapor phase at the
interface (the interfacial temperature 7" and the pressure p,), is a positive function.
Hence, the mass flux across the interface will occur from high to low chemical
potential regions.

In the basic motionless state, at the interface z=0 being at the pressure p, the
material equilibrium condition [16] '

w(Ty, po) = mi(Ty, po) (12)

holds. Relation (12) defines the point ‘(TO, po) at the phase coexistence curve [16].
The basic solution of the system (1) to (11) is given by

®=00=0, T° =—%Z+To, 0 =—Kiz+To

1
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P’ =-pgz+py, pl=-pigz+p | (13)

In the case where the temperature is kept constant at the rigid wall, the heat flux ¢
in the solution (13) is equal to A,(T;, —T)/d, .
In section 4, the problem on linear perturbations of solution (12), (13) will be

formulated. But first, relation (11) will be linearized and examined in more de-
tails. ’

3. LINEARIZED EQUATION FOR THE MASS FLUX

Equation (11) defines. the nonequilibrium mass flux across the interface. In the
limiting case K — o from this equation follows (under the reasonable assumption
that the mass flux is finite everywhere along the interface) that the chemical po-
tentials are equal. This expresses the fact that the moving interface is in a state of
quasi-equilibrium. In the case K =0, the equality J =0, following from Eq. (11),
is the non-leak condition at the interface. Consequently, the problem with no
phase change corresponds to this latter case. "No phase change" and "quasi-equi-
librium" are two extreme cases of the phenomenological equation (11). In the next
sections, we will see the profound difference in the stability analysis results in
these two marginal cases.

To obtain a linearized form for Eq. (11) we introduce for every point of the in-
terface z=C(x, y,t) with the temperature T(x, y, t) a notion "quasistatic refer-
ence state" which is the motionless state of the liquid-vapor system with a flat in-

terface at the temperature T (T=T(x, y,t)) and the saturation pressure p(T').

The difference of the chemical potentials vanishes at this reference state. Assum-
ing that inside each phase local thermodynamic equilibrium holds near the inter-

face z = Z;(x, Y, t) , we use the classical thermodynamics formulas [17]

(clu) _1 (éw_) 1
P Jrpry P P Jrpqny P

(valid for pure substances) and approximate the difference of the chemical poten-
tials as follows

— pl_ps(T)_p_ps(T) (14)
P1 P

Hi—H
In a linear approximation the dependence p,(T’) is defined by the formula
L
pu(T)=po+ PO (T-T) (15)
(p-pi)To |

obtained with the help of the Clausius—Clapeyron equation [16] for the slope of
the phase coexistence curve. With the help of formulas (14), (15), Eq. (11) is eas-
ily reduced to the linearized form '



ON RAYLEIGH-TAYLOR INSTABILITY IN HEATED LIQUID-GAS SYSTEMS 7

L
- Ky = |T-T, -
J 0T0|: 0

M(Pl"po)”w] at z=§(x,t) (16)
ppiL pL

which will be used below in the linear stability analysis. In Eq. (16), the constant
K, is the value of the phenomenological coefficient K at T =T;, p = p,. In the
quasi-equilibrium limit, one obtains from (16) the expression for the interfacial
temperature as follows:

M(

T=T%=T)+
ppiL

pl—po){—;(pl—p) at z=¢(x.t) (17)

The last term in Eq. (17) expresses the influence of the dynamic effects on the

temperature 7°4 of the perturbed interface which is, by assumption, at the quasi-
equilibrium state. We shall consider the case when the density of vapor is much
less than of liquid: p; << p. In this case the last term is small in comparison with
the previous one, and formula (17) only slightly differs from the Clausius—
Clapeyron relation for the vapor phase.

If one neglects a priory the last term in expression (14), then from the original
equation (11) one gets the rate equation in the form wherein everywhere along the
interface the mass flux J is proportional to the difference between the actual local
vapor pressure p, at the interface and the equilibrium saturation pressure p (1)
corresponding to the local surface temperature. This form presents a formal anal-
ogy with the well-known Hertz—Knudsen equation [12]. Using this analogy we
get the following rough estimation for the value K through the accommodation

coefficient B (B <1) of the Hertz—Knudsen equation:

Ky =pp;M"2 [(2nRT,)" (18)

Here: M is the molecular weight of vapor, R is the universal gas constant.
Equation (16) can be rewritten in the form:

J=—KO%(T—T“‘) (19)

0

which shows that at any given point of the interface local nonequilibrium conden-
sation (] >0) or evaporation (J <0) takes place following whether the actual

temperature T is lower or greater than T°9. Equation (19) shows also that the in-

terface temperature 7 can be presented as a sum of its "equilibrium part" 7°9 and
a "nonequilibrium addition" —J7,/KyL. A more meaningful expression for the
temperature 7 may be derived with the help of Eqs.’ (6), (7) and (8). If one ex-
presses J from equation (7) and the pressure jump p; — p from Eq. (8), then from
Eq. (16), neglecting all nonlinear terms, one gets:
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T =Ty +T,2=LL(p, —Po)‘ﬁv'""'
ppiL pL
(AVT-n—A,VT; - n)
K2
This expression shows that the change of the surface temperature results from the

pressure drop in the vapor phase, the interface curvature, jump of the normal vis-
cous stresses and the jump of the heat flux at the interface.

+2—Y£n-(nD—-n1Dl)-n+]}, at z=§(x,t)
p

4. LINEARIZED PERTURBATION EQUATIONS

We are considering here the governing equations (1)—(11), (16) in dimensionless
form, choosing d,, k /d,, d?/v,, pkv, / d} and qd, /), as the length, velocity,
time, pressure and temperature scales respectively. We formulate the problem on
stability of the static state (12), (13) examining for simplicity 2—-D perturbations.
With the help of the formulas u = -¥,, w ="¥,, we express the velocities of lig-
uid and vapor through their stream functions, eliminate the pressures and linearize
the system (1)—(10), (16) near the basic solution (13). Expanding the perturba-
tions into normal modes by the Fourier developments

(%, %,T.7;,¢)=(0,0,7°, 72, 0)+

+(y(2), y1(2), i6(2), 10,(2), ia) exp(nt + iox).

we get the following eigenvalue problem.
In the liquid phase 0 <z <o (D=d/dz)

(D2 - mz)(Dz . v*n) v =0, (D2 —w? —nk, Pr) 6 = -k A0y (205
In the i/apor layer —-1<2<0

(D?-0?)(D?-0?-n)y,=0, (D*-0?—nPr)6, =0y, 1)
For the liquid phase the solutions satisfy the vanishing conditions at z—
y=Dy=0=0 ' (22)
At z=-1 the no-slip and thennal conditions give respectively

V1= Dy, =0 (23)
8,=0 (or DO, =0) (24)

At z =0 one has the continuity conditions for the temperatures and tangential ve-
locities
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6,=0+(1-A,)a, Dy=Dy, . (25)
the mass balance and the jump balances of energy, normal and tangential stresses

(1-p,)nPra=o(y-p.y) (26)

0(D6, -1:'D8) =y, —n Pra 27)
[(1— o7 ) n+3(1-n7") 02| Dy + ' Dy - Dy, + o(0?-N,)Nzla=0  (28)

5, 77100 (0 - ha) =17 (D2 + 02)y - (D? +02) y, 29)

From Eq. (16) we find the temperature gradient along the interface, eliminate the
gradients of the pressure and of the mass flux with the help of Eqs. (2), (10). Then
we obtain at z=0

Qw(0-A.a)= zeD[Dzlul —v;'D?y - 032(1 - vIl) w] —t,0(oy,-nPra)
(30)

In the system (20)-(30) p, =p;/p, Vs =V;/v (n.=my/n is the dynamic visco-
sity ratio), A.=A;/A, R.=k/k, Pr=v/k is the Prandtl number, N, =
=(p-p)gd? /o, is the Bond number, N, =mnk /(cd,) is the crispation group.
The parameter Q = A, (T, — To)/ (pi#L) can be called the modified Jakob number,
s, =0.1y/pLd; is the thermocapillary number. The dimensionless parameters
to = Tohvy (o127 and x, =Tk, /(KyI2d, ) in (30) characterize respectively the
variations along the interface of the temperature's "equilibrium part" and of
its "nonequilibrium addition". In Eq. (29) the dimensionless group s,1;'Q =

= o,qd} /(n,k,?u,) is the Marangoni number Ny, for vapor phase.

If one multiply (30) by ser;‘

, one obtains the explicit expression for the ther-
mocapillary force s.t_ 10w (6 -1,a), which balances the jump of the tangential
stresses in Eq. (29). From this expression one can see that in general case the
thermocapillary effect is characterized by two dimensionless groups s, and
S, = oﬂb/ (KOLVI) = tnsetgl. In the quasi-equilibrium limit one has 1, =s,=0,
and the thermocapillary effect is characterized only by the parameter s,. In the
limit t,, = o, Eq. (30) vanishes to the condition of no phase change. In this limit
the Marangoni number can be used as the parameter which characterizes the in-
stability. However, in the following, all results on stability will be presented with
respect to the modified Jakob number Q. This is suitable for comparison of the
marginal cases "no phase change" and "quasi-equilibrium".
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5. GENERAL ANALYTICAL EXPRESSIONS
FOR THE NON-OSCILLATORY MARGINAL CASE

We will first consider the case when the first condition (24) is imposed at the rigid
wall. We set n=0 and obtain for Egs. (20), (21) the solution satisfying the
boundary conditions (22)—(29). For the functions v, y,, 8 and for the amplitude
of the surface deformation a we get

w=(Az+ B)exp(—mz), v, =(Lz + U,)coshwz - (N,z + V;)sinhwz 31
0= [c + B (z + wz2) 4 R Bz] exp(~wz) (32)
4o 2 :

a=20°N, (i -v;'0;)/(0? - N,) (33)
where

a=0"(sinho -2}V, +(0 + sinho cosho + p.0?)U, |, B=ply  (4)
L= (;)_l[sinhzlmVl +(o + sinho cosh(x))U,] (35)
N, =m'1[(co —sinh® cosh(o)Vl —costhUl] : (36)
c-B@V+E@U,  _ tahal, (1+tanho)a i 37)

4(1+7L:1tanhco) Q(l+k§'tanhc)) C1+A] tanho
with

E{(0)= co_3[(o3 —sinh® @ tanh® + lit*(sinh2 ®— 0)2) tanh(o]
Ey(w)= m_3[2co2 - m(l —mz)tanhco —sinh? o + k,(co +sinh® coshw +3p,0)2)tanh(o]

To get the relationship between the amplitudes U; and V| we deduce from
Eq. (29) the expression 8 — A,a, which is the total temperature perturbation along
the surface, and introduce it into equality (30). Using formulas (31), (34)—(36) we

obtain finally

M=Vt (38)

where

V((D)=_E3(0))+SCE4(@)—SHOJ/2 39)
Es(ﬂ)) + SCEﬁ((D)

with

| Ej(o) = m‘l[mz +cosh?® + n:l(co + sinh® coshu))]
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Eyw)= (1 - v:l)((o +sinho cosha) + p,v; '©?

Ei(®)=0"sinho cosh® — o + n:' sinh? ® — @?
5

Eg(w)= (1 - v:l)sinh2 ® + V; '0?

Note, that the mass flux through the interface is, by definition, proportional to the
expression oy (0), which is equal to ®U), in accordance with formula (31). In
the case of no phase change where s, — o, the function V(®) tends to infinity.
One has also U, = 0. Hence, Eq. (38) for the amplitude V; becomes undeter-
mined. The particular case s, — « will be examined in the next section. Here we
assume s, be finite. From Eq. (29) with the help of formulas (31)—(38) we get the
neutral stability condition

Q{[E,(m)V(m) + Ey(0)]-8N,0%(1+ tanhco)[V(u)) - v:'] /(@2 - Ng)} -

=—4tanhw — Stese‘l(l + A7 tanhco)[Es((o)V(m) + E3(0)] (40)

Identify now the physical origin of each term in relation (40). The second term
in the right-hand side is proportional to the amplitude of the jump of tangential
viscous stresses. The term linked to the temperature perturbation 8 gives a contri-
bution to the left-hand side (the first term) as well as to the right-hand side (the
first term). The contribution to the right-hand side appears because, in contrast
with the case of no phase change [9], the temperature perturbation at the interface
(which is 6(0) = C) depends (see (37)) on the temperature difference T,, — T, (on
the number Q). The second term in the left-hand side reflects the contribution of
the surface deformation to the total temperature perturbation.

In the case where the heat flux is kept constant at the rigid wall, the resolution
follows the same line and the following neutral stability condition is obtained

O{[Hi(@)V(©) + Hy(0)] 8N, 02(1+ tanho)[ V(0) - v;'] /(co2 -N,)}=
= 4~ 8r,5; (33 + tanho ) Eg(0)V(0) + Ey()] | (41)
where V(o) is defined by (39) and

H(o)= co‘3[oa(2 +m2)tanhm — @2 -sinh?w + k.(sinh2 o mz)]

H,(0)= m‘3[co(l +0)2) +®” tanho — sinhe cosha +k,((o +sinhe coshw + 3p,0)2)]
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For every liquid-vapor system the neutral stability curves can be plotted with
the help of general formulas (40), (41) if all physical parameters of fluids are
known. The oscillatory modes will be investigated on the bases of the general ei-
genvalue problem (20)—(30). We will perform all numerical calculations using the
physical parameters of the system water with its vapor at T, =373 K. These pa-
rameters are given below

p=965 kg/m®, v=2.9-107 m?/s, k=1.69-107 m?/s, L=0.68 J/(msK)
p =06 kg/m®, v;=2.08-10 m?/s, =02-10"* m?/s, A, =0.023 J/(msK)
L=2.26-10° J/kg, ©,=0.06 N/m, o,=0.2-107 N/(mK)

The value K|, is unknown. For its estimation one can use formula (18). However,
experimental values for the accommodation coefficient, reported over some dec-
ades by various authors, vary in a wide range. The reasons for existing discrea-
pancy are not yet clear. In the light of existing data for pure substances the values
of B can be assumed to be between 0.01 and 1. This corresponds to the values K

higher than 5.8-10°° kg2/(m2s 1) and less than 5.8-107 kg2 /(mzs 1). The inter-

face pollution and the present of the inert gases strongly influence on the rate of
the mass transfer, leading to its essential decreasing (in [8] it has been found ex-
perimentally that for still water B varies from 0.001 to 0.02, depending on the

purity of the water. For pure water system the values K, <3.8- 1076 | kg2 / (mzs J )
are not, probably, physically realistic, but we will do also the calculations with
Ky<5.8- 107 kg2 / (mzs J ) (working thus with some liquid-vapor system model)

follow the interactions of the Rayleigh—Taylor, the thermocapillary and phase
change mechanisms continuously as one changes K, from the limit of no phase
change to the quasi-equilibrium one.

When in an isothermal system of two immiscible fluids, the lower phase has
the lowest density, the static state is unstable due to the Rayleigh—Taylor instabil-
ity. All infinitesimal perturbations whose wave number is smaller than the critical

value opy = Ngz = [(p -01)g /6]1/2 d, are then exponentially amplified. On earth

g=9,=938l m/ s, and all perturbations with the wavelength larger than ap-
proximately 0.016 m (typical value for air below water) will be amplified. For
earth conditions, with small values of d| the value of wg¢ is small. In micro-

gravity conditions, as g —> 0, the critical wave number wgr tends towards zero

as g” 2 We thus have two different cases for which the Bond number is small and

only small wave number perturbations are amplified by the Rayleigh-Taylor
mechanism. In the following, it is examined how the thermocapillary and phase
change effects influence on the stability of the system with respect to the long-
wave perturbations.
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6. THE NON-LEAK CASE

This is the limiting case s, — «. No mass transfer occurs from one phase to the
other, and the coupling between the pure Marangoni—Bénard and the Rayleigh—
Taylor instability mechanisms can be investigated. Equations (40), (41) can be
particularized to the limiting case s, — o by keeping the leadlng order terms
(proportional to V(®)). They correspondingly reduce to

O[Ey (@)~ 8N,0%(1+ tanh) /(0? - N, )] = 81,57 (143 tanho) Eg(0)  (42)
for the case when a temperature is kept constant at the rigid plate and to

Q[Hl(m)—SNcrco2 (l+tanhm)/(a)2 -N

g)] = 81,571 (4! +tanho ) Es(0)  (43)

for the case of constant heat flux condition. Note, that the first equation is
equivalent to the neutral stability condition obtained earlier by Smith [9] for the
system with an infinitely deep upper fluid.

We will now investigate the case of small wave numbers under the assumption
that the physical parameters in the neutral stability conditions (42), (43) have the

values typical of usual liquids and their vapors. Since typical values of 1;' and

?»,’,1 are large, we assume that n:lm and 2}'o are of order unity. We also assume
that k, > 1. We then develop Egs. (42), (43) in powers of ® and, keeping the
leading order terms, get the following approximate expressions for ® — 0:

24N, | _ 161, - :
Q[mz—Ng— " ):-k*:e (mz—Ng)(l+k,1m)(l+n2 } (44)

2 240Ny ) 16t (5 e '
Q[m A J" k.x*se("’ Ng)“’(” 2 ] *

It is worth noting here that formula (44) differs from the result obtained by
Smith [9] in a long wave approximation. That is because, in contrast with this
author's analysis performed for earth gravity conditions and for a system in which
the semi-infinite gas domain lies above, we consider here the case of small Bond
numbers N, and of values of &, higher than unity.

There exists a finite critical value of w, for which the left-hand side of Eq. (44)
(or of Eq. (45)) is equal to zero. This happens for wr = (N, /h)l/2(24 GT)”2

. 12
the case of constant wall temperature, and for ®, = Nk, (12+(144+Gq) )

for a constant heat flux condition. The gravity parameters G and G, are defined
as follows

oo kRN, (p—p))gd} G - KN, (p-pi)ogd;
r= .~ B 9= N2 21,2 (46)
cr | Ncr nlk
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At the critical values of ® the left-hand side of (44) and of (45) changes sign. In
the vicinity of points w7, ®, the values of Q are infinitely large. The correspond-
ing asymptote separates two marginal non-oscillatory instability curves. This is
seen in Figures 3(a)—(c) plotted on the basis of the original equation (40). What-
ever the kind of the boundary condition at the rigid wall, the numerical solution of
the general eigenvalue problem (20)—(30) showed the existence of two real eigen-
values n; and n, (oscillatory instability will be discussed later). The first eigen-
value changes sign on the marginal non-oscillatory instability curve (curve /, Fig-
ures 3(a)—(c)) lying in the domain © <y (or ® <w,), the second one — on the

curve 2, lying in the region ® >y (or ® >w®,). Above the curve I the eigen-

value n, is positive, while n, is positive below the curve 2.

Two different mechanisms are acting to give an overall unstable situation. One
is essentially linked to surface deformation. The other is due to convective
mechanism. It is easy to compare the action of these mechanisms in the case
N, =0, when the total temperature gradient at the interface z =0 is the only one
instability mechanism. We will do this for the case where the temperature is kept
constant at the bottom wall. Here the temperature-gradient amplitude is
Qu[C(®) — Aa]. Using formula (37) with U= 0, one finds that the amplitude is
proportional to the expression E,(®)V; —4(1+tanhw) a. The first term expresses
the change of a temperature gradient due to the convective mechanism while the
second one is due to the surface deformation effect. From formula (33) with
N, =0 one finds that for all ® — 0 the second term is equal to —8N, V;. In the

limit @ — 0 the first order approximation to the first term is ko?V, /3. One see
that if  is small enough, the leading term is the second one. This shows that the
instability above the curves I is linked to surface deformation effect. With in-
creasing of ® the first term increases. For ® > oy, the absolute value of the first
term becomes larger than of the second. Hence, the dominating mechanism
of instability in the domain below the curve 2 is the convective mechanism.
In the limit ® > both Egs. (40), (41) reduce to the same expression

Q(l~—k,.)=8163;1(1+7L;')(1+n;1)m2. It is independent of the crispation group
and of the Bond number. This reads that the influence of the surface deformation

completely disappears for short wave perturbations.
For N, #0 every curve / intersects the w—axis at the critical wave number

o7 of pure Rayleigh—Taylor instability. (For the situation depicted in Figure

3(a) 0 g =1.98-107 and the crossing point is not seen because it is very close to
the coordinate origin). Numerical calculations of neutral stability curves show that
with small Ny and N, /R, , the asymptote positions are well predicted by the for-

mulas for o7, ®g derived above in a long-wave approximation. This is seen in

Figure 3(a) wherein the dot-dashed curves are plotted on the basis of Eq. (44).
From Figure 3(a) to Figure 3(c) the gravity parameter Gy increases. Its value is
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Figure 3. Neutral stability curves in the case of no phase change. Physical parameters of system are
as for water with water vapor at 7,=373K: (a) - ¢g= 9.81-10™ m/s2 , d,=5pum; (b) -
g= 9.81-107* m/sz, d, =500 um; (c) - g=9.81-107 m/sz, d, =500 pm. The dot-dashed

curve represents the long wave approximation. Unstable zones are above the curve 7 and below the
curve 2.
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equal to 5.856- 107, 58.56 and 5856 in Figure 3(a), Figure 3(b) and Figure 3(c)
respectively. For large positive Q the instability condition can be defined by the
inequality ® <or (© <o,). The influence’ of gravity of this instability criteria

disappears if Gy/24 <<1 (G, /144 <<1), so that in the formula for o7, (/) the
parameter Gy (G, ) can be neglected. This is a case in Figure 3(a) where with

' large Q the instability interval is much wider than the interval (O, N ;/ 2). Contrary,
in Figure 3(c) Gy /24 >> 1, positive (, the interval of the wave number of growing
perturbations is practically equal to the interval (0, N ;/ 2) of the Rayleigh—Taylor
instability.

When Q is large and Gp/24 <<1 (G,/144<<1), the dimensional critical

wavelength is 2nd, /or (anl/coq) with o = (24Ncr/k,*)1/2 (a)q ~ 12Ncr/k*). It

is much less than the critical Rayleigh—Taylor wavelength 2nd;|N, 2 One easily

shows that the square of ratio between the actual critical wavelength and the criti-
cal Rayleigh-Taylor one is equal to the small parameter Gr/24 (G,/144). The
dimensional critical Rayleigh-Taylor wavelength is independent of fluid depths.
For the thermocapillary instability the situation is contrary to that. Here the criti-
cal wavelength decreases with decreasing the vapor depth. Note finally, that at
earth gravity for the water-air system at 288 K to the values Gy =24 and
G, =144 there correspond respectively the depths d; =21 pm and d) = 1.4 um.

7. QUASI-EQUILIBRIUM LIMIT

To get the neutral stability conditions for the case s, =0 one has to replace in
formulae (40), (41) the function V(®) by

E3(0) +s.E4(®)
Es(0) + s.Eg(®)

V()= (47)
For @ — 0, keeping the first order approximation to each term in Eqs. (40), (41)

with V(0)=V®(w), one correspondingly obtains the following approximate
formulae

, 16N, 8N,
or _N.|=
Q[(D +k*n*(1+2se)m+k*(1+236) I

2 —_—
_ _H%[(z e+ 356) o>+ 616(1 + k;lm)(l + 2n;1(o)] (48)

16N, ) 8N, R E
Q[[“m(1+2se)J°’ TR(2s) " Ng}
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If N, =0, the left hand sides of Eqs. (48) and (49) have both the sign of the
parameter ), while both right hand sides.are negative. Hence, in the domain of
short wave numbers the neutral stability curves are lying in the half plane Q <0.
This result is opposite to that obtained in the previous section for the non-leak
case in which for Ny =0 the thermocapillary surface waves instability exists
above the neutral stability curve lying in the upper half plane. The distinction is a
consequence of the fact that for positive Q (heating from below) the phase change
stabilizes all monotonical quasi-equilibrium perturbations. Here we are able to
explain the stabilizing effect for an arbitrary wave number, but only by ex-
amining the neutral perturbations.

Consider first the ratio of the vapor normal velocity w; at z=0 to the surface
deformation . For positive ® it may be written, after some manipulations, as

@i, — '(wz _Ng)
o 2Ncrm[V°q —v:l]

(50)

with V®1 defined by (47). For v, 21 the function V*9 is negative since all func-
tions E; (i =3, 4,5, 6), defined in section 5, are positive. The ratio (50) is nega-
tive for N, =0. Hence, the phase change mechanism generates the motion with a

structure shown in Figure 2: the liquid moves towards the crests and away from
the troughs, and the vapor moves away from the crests and towards the troughs.
At positive ), in the basic state the liquid is more cold than the interface, while
the vapor is more hot. Thus, owing to the motion generated by the phase changé
mechanism, the interface is cooled near the crests and heated near the troughs.
Consider now the influence of interface deformation on the surface temperature. It
should lead to the same effect since near the crests the surface is convex with re-
spect to the cold liquid, while near the troughs — to the hot vapor side. In the ex-
amining here linear approximation this is seen from the expression for the ampli-
tude of total temperature perturbation at z =0, which is Q(C — A,a) with C—A,a
defined by formula (37). Indeed, in this expression the term, connécted with the
surface deformation influence, is the product of O and the last but one term in the
expression (37). This term does not depend on N,,. Thus, with positive Q, for all
nonzero o its sign is opposite to the sign of the surface deformation amplitude a.
Let in a consequence of a perturbation, a part of the interface gets warm (cold)

so that some volume of above liquid evaporates (condenses). Then at N, =0, for

heating from below, both, the surface deformation effect and convection induced
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by the phase change mechanism, cool (heat) this volume, leading to its condensa-
tion (evaporation). If N s # 0 this is valid only for the perturbations with o > N;/ 2
for which the right-hand side of equation (50) is negative. For the perturbations
with ® <N;/ 2 the ration (50) is positive; the redistribution in the pressure field

due to the action of gravity forces changes the direction of the motion in compari-
son with that at pure weightlessness. If there were no phase change, this motion
should promote an increase of the surface perturbation. However, due to the influ-
ence of surface deformation on the interface temperature the vapor may condense
at the crests and the liquid may evaporate at the troughs. Thus at ® < N!l]/ 2,.0>0
there exists the competition between the phase change stabilizing and gravity
destabilizing mechanisms.

Notice, that in the case under consideration the thermocapillary effect is char-
acterized by one dimensionless parameter, which is the number s,. From Egs.
(48), (49) it is clearly seen that the influence of the thermocapillary effect on the
long wave nonoscillatory instability is negligibly small provided that s, <<1, or,
equivalently, d, >>d, =o,Ty/ (pL). The value d, is very small. For water system
at 373 K one has d, =0.055 pm.

Consider the neutral stability condition (48) with s, <<1. If Gy <8 then
N, <8N, [k, and the left-hand side keeps the sign of Q for all positive . When

this is the case, Eq. (48) defines one neutral stability curve Q(w), along which
Q>0 forw <oy and Q <0 for ® > w7 . The example is depicted in Figure 4

plotted on the basis of Eq. (40) with V(w) equal to V*(w) for earth gravity
condition, d; =10 pm. The maximum value of Q, equal to 4-107%, is reached at

‘®=2.4-107 It is worth to note that the temperature difference 1, -1, corre-

sponding to the maximum Q is extremely small (4.5-107° K). This means that
the phase change inhibits the gravity waves at any heating from below.

For Gr > 8, Eq. (48) predicts the existence of two neutral stability curves di-
vided by a vertical asymptote

_ 1/2
o =% =8N, (kn.) " +(N, - 8Nk + 64N2k 272

This situation is presented in Figure 5 for g =107 Jo» dy =500 pm. It is seen that
the system is unstable for all values of . For () — o the instability interval tends

to (O, (o;q) where o7 =0.0018. The critical Rayleigh-Taylor wave number

wpr. = 0.002 is only slightly larger than 3. The instability region is hatched. It

consists of two regions in every of which one eigenvalue n; or n, of the problem
(20)—(30) is positive.
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Figure 4. Neutral stability curve for the water system in the case of a quasi-equilibrium interface
perturbations (K, = «): g =9.81 rn,/s2 , dy=10 pm. The domain of instability is above the curve.

In Figure 6 the neutral stability curves are plotted for d; =100 pm at different
gravity levels. The curve I corresponds to g =0. It is lying in the negative half

plane. The static state is stable in the domain above this curve. For g =1.5-107 9o
(curve 2) the phase-change mechanism stabilizes all perturbations if Q is higher
than 2-1078 (the maximum value of Q along the curve 2). To the critical value
g =18-107 go (Gr =8) there corresponds the curve 3 with the asymptote
@31 =0. For the gravity acceleration g =3-107 g, two marginal stability curves
(curves 4) exist. The domain of instability consists of two regions. One lies below

the left curve 4, the second — between two curves 4. At this gravity level, for all
positive () the phase change cannot prevent the Rayleigh—Taylor instability.
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Figure 5. Neutral stability curve in the case K, - 0, g=9.81-10" m/s?, d, =500 pum.
The state of no motion is unstable inside dashed regions.
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Figure 6. Neutral stability curves in the case K, — ©, d, =100 um, and for various gravity levels
(curve I: g=0,curve 2: g=15-10"g,, curve 3: g=g°' =18-107¢g,, curve £ g=3-10"g, > ¢,
where g° is the critical value above which an asymptote exists).

One essential point should be discussed with respect to the stabilizing influence
of the phase change mechanism. The above analysis was performed for the case
of infinitely deep liquid phase. With very long waves a stability of system will be
affected by liquid depth. To investigate this effect we solved the stability problem
(20)—(30) at n =0, imposing the condition (22) at the boundary z=d, !, For the
obtained neutral stability condition the long wave approximation have been de-
rived and investigated. Under the assumptions d, << 1, s, <<1, p,d, <<1,
n:ld, <<1, kd? >>1, we found the stability condition for heating from below as

follows: G} = N;k. / (Nc,df) <160. (Note, that the parameter Gy coinsides with

Gr in particular case d =01/2/ [(p pl) ]1/2 ). The obtained condition can be
written in the form

2
(p—py)° g*did?

<160
oonik

which shows that, with given physical parameters, the stability takes place when
the lower fluid has sufficiently small depth. Moreover, the stability condition is
independent on the sign of the gravity acceleration g. It appears that this resuit
confirms the result by Huang and Davis [11] mentioned above in the introduction.

Finally, consider the case of a constant heat flux at the rigid bottom where the
long-wave approximation to the neutral stability condition is given by Eq. (49).
Here the asymptote

m:m;q=8Ncr[—l+(l+G (1+16N, k" -' 16]/]?,,
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exists for all positive values of N g- Itis seen that for 16Nk, m:! of order unity
or less, with satisfying the inequality G, /16 <<1 one has w,! ~ 0. This predicts

that for G, /16 <<1, with sufficiently large positive values of Q, the Rayleigh-
Taylor instability can be prevented by the stabilizing effect of the phase change.

8. THE CASE OF PURE WEIGHTLESSNESS

In this case oscillatory modes have been examined for positive Q by solving the
general eigenvalue problem (20)—(30). The overstability caused by the thermo-
capillary mechanism has been found. For K, =0 the marginal oscillatory curves
are presented in Figure 7 for three vapor depths: 0.005 m, 0.01 m, 0.02 m. For
every curve the domain of instability lies above. With decreasing the depth, the
minimum critical value of (), above which the instability exists, increases. For
d,=0.005 m it is equal to 0.064. For the water system model the corresponding
critical temperature difference T, —Tj is equal to 72 K. With further decreasing
of vapor depth the critical temperature difference increases rapidly. As a conse-
quence, with very small depths, the oscillatory instability does not occur for
physically realistic thermal conditions. In Figure 8 the frequency of overstable
modes (@, =Imn, at Ren = 0) is plotted versus the wave number @ for the case
d;=0.01 m. To every curve there corresponds the marginal oscillatory curve
Q(w, K;) along which the minimum of Q is reached at some critical value of ®.

With increasing K, the minimum value of Q increases. For K, > 5.8-10°

kg? / (msz) (B>0.01) the corresponding critical temperature differences are

very large to be physically realistic. Hence, in the case under consideration the
phase change does not cause the overstability. It is worth noting, that this
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Figure 7. Marginal oscillatory curves for K, =0, g =0, and for three vapor depths —
d,=0.005 m, 0.01 m; 0.02m. For every curve the domain of instability lies above.
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Figure 8. Frequency of overstable modes as a function of wave number. Depth d, = 0.01 m, g=0.
From the curve I to 5 the value of K, increases (curve [: K;=0, K, = 10719102 kg? / (mzs J)

forcurvei, 1=2, 3, 4, 5).

result is not in contradiction with the result by Huang and Joseph [11] mentioned
in section 1. In [11] a system was coinfined between two rigid plates. The oscilla-
tory instability caused by the phase change was shown to exist with respect to
perturbations of extremely long wave (10—100 m). In these author's study the
influence of liquid depth on the behavior of perturbations was essentially impor-
tant.

Consider now the long-wave approximation to the neutral stability conditions
(40) and (41) assuming for simplicity that

Mo <<1, n;lm <<1, s, <<1, py<<1, k21, vil <l &30

Under the assumptions (51) we obtained from (39) the approximation
Vo)~ —1.5(1 —Sn(1)2 ) / ®> at @ — 0, then we reduce Eqs. (40), (41) respectively
to the following

2 ;
OB (0) =100 T 1+i]co2+3‘—'= (52)
‘ k433 L Tn Tn |
16w%t A T ]
P(w)=——"=||0o+—= |0 +3-2% 53
or@=—313 Tn]w = (53)

Here Pr(®), F,(®) are the polynomials of o, defined as follows

Pr(0)=0% —6N_k'(4-a) o + 48Nk o (54)
and

P (0) =0 — 24Nk 'o? + 6Nk 'aw + 48Nk 2a (55)
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with

ke _ oKL
SnNcr plthTO

Q= (56)

Equations (52), (53) are presented in such a form where it is seen that, instead of

O, the Marangoni number for vapor phase Ny, = Se‘C;lQ can be used like the pa-
rameter which characterizes the thermocapillary mechanism of instability. But
now in will be shown that, in a system heated from below, the condition of exis-
tence for the thermocapillary instability is formulated in terms of the dimension-
less group a defined by (56).

The validity of the following assertion can be readily shown. If 0 <o <4/3, 3 the
equation Pr(®) =0 allows the real positive roots o, ®r,, given by the formula

1/2
Oria = (3N [4 —aF(4/3- a)l/2(12—oc)m']

The polynomial P is positive when © <@, or ® >®p,. For o) <0 <@y itis
negative. For o >4/3 the polynomial B-(®) is positive defined function for all
values of o.

Since the r.h.s. of equation (52) is negative, it follows from this assertion that,
with negative (, the static state is unstable for all values of a. Here the growing
perturbations have the wave numbers ® < ®y; and ® > ®p,; the mechanisms of
instability are the phase change at the interface and the convection induced by the
thermocapillary effect. For positive (, the instability takes place only when a is
small enough, namely, when 0 < a <4/3. Long surface thermocapillary waves are
the cause of instability. The wave numbers of dangerous perturbations belong to
the interval (w4, ®r,) dislocated at a finite distance from the coordinate origin.
Very long waves are stabilized by the phase change mechanism. In Figure 9(a)
the neutral stability curves are plotted for the model system with the physical par-
ameters as for water and water vapor, but for the value K =3- 1071 kg2 / m?s )
that is very small to be physically realistic. The depth d; =100 pm. The instabil-
ity takes place for three domains: above the curve 2, below the curve 7 and below
the curve 3.

For the water system we calculated K, from Eq. (18). Then from the inequality
a <4/3 we obtained the condition of existence for the thermocapillary instability

as follows: d; < d;(B) = 1.3-10™* B! um. In accordance with (51), d; >> 5.5 x
x1072 pum (s, <<1). Therefore, this instability condition is valid only if
B<<2.3-107. The more realistic instability condition B<1.2-107 have been

obtained for d; = 5.5- 102 pm (s, = 1) from the long wave approximation to Eq.
(40) derived for the case when in (51) the third assumption is not imposed.
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Figure 9. Neutral stability curve for the model system with physical parameters as for water with
water vapor, K,=3-10"' kgz/(mzs J), d, =100 pm. Effect of increasing the gravity level:

(@)-g=0, (B)-g=510"g,, (c)- g=10"g,, (d) - g=5-10"g,. Domains of instability are
dashed.

Note finally, that for a pure water system, the monotonical surface-wave ther-
mocapillary instability is nonexistent in the case of a constant heat flux condition
at the bottom. Here the approximation to the neutral stability condition is given by
(53), (55). By direct calculations one can easily show that for all positive o the
values F,(0), Pq(24Ncr/k,,) are positive, while the value Pq(IZNcr /k,) is nega-
tive for o <14.4N_, /R, and positive for o >14.4N,, /R, . Consequently, the poly-
nomial F,(®) allows two roots in the interval (0, 24N, /k,) only when

o <14.4N,, /k, . The last inequality is not valid with the values K|, corresponding
to the accommodation coefficient value between 0.01 and 1.

9. ON INTERACTIONS BETWEEN THE THERMOCAPILLARY,
GRAVITY AND PHASE CHANGE MECHANISMS

Here the consideration is restricted to the case when the constant temperature is
kept at the rigid wall. For small Bond numbers assuming conditions (51) be valid,
we get the neutral stability condition with respect to the monotonical long-wave
perturbations as follows

16lo? =N
OP(0)=- ((D 9)1"'“1+ijw2+3‘—6} (57)

k"‘SG Tﬂ Tn
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where
P(0)=0" - 6N k' (4-0+Gy/6) 0 +48N2 ka1 - G /8) (58)

The following assertion can be easily proven. If 0 <o <Gy /2 then the poly- .
nomial P(w) allows two positive real roots for 0 < Gy <8 and the only one for
Gr >8. The neutral stability curves presented in Figures 9(b)—(d) correspond to

the fixed value @ =5.2-107 (K, =3-1071? kgz/(mzs J) ). The values of G4 are

equal respectively to 2.23, 4.46 and 22.3. For the case shown in Figure 9(d), with
positive (), very long waves are not more stabilized by the phase change.

For pure water system the conditions of the above assertion are not fullfiled.
Here o >4 > Gy /2, with positive , the behavior of long wave perturbations is
determined by interaction of the gravity and the phase change mechanisms. Under
the condition Gr/24 >>1, one can show that the polynomial (58) allows the only

one positive root ® = N, _(17/ 2, Hence, the Rayleigh—Taylor mechanism dominates if

Gy /24 >> 1. Further, by simple investigations one can show that for

0<Gy <8, 30>20-Gp/2-16(1-G,/8)"

the polynomial P(w) is the positive defined function for all © > 0. It follows, that
Eq. (57) defines the only one neutral stability curve. For o > N;/ 2 the values of 0

are negative along this curve. For ® < N, ;’ 2 the instability takes place only for ex-
tremely small values of (. The situation is quite analogy with the case shown in
Figure 4. If G/8<<1, then the inequality for o reduces to the same stability
condition as for pure weightlessness: o >4/3. Since for pure water system the
inequality o >4/3 is valid, it follows that the inequality Gy /8 <<1 defines the
condition under which the Rayleigh—Taylor mechanism disappears.

10. DISCUSSION AND CONCLUSIONS

Since the publication of Zuber's theory [2] several theoretical studies were performed
(see [19] and refs. cited in [19]) to account for the influence of viscous effects on
the Rayleigh—Taylor mechanism. The case with finite gas depth was considered in
[20, 21]; the authors investigated the influence of contact angle on the critical heat
flux value by examining a stability problem with the gas layer thickness equal to
the bubble depature diameter. In the work [22] the phase change effect was taken
into consideration, however, the vapor viscosity effect was ignored and infinite
depth was assumed for vapor layer. The approach of the present work differs from
the previous investigations in that simultaneously are examined the following
three effects: finite (variable) vapor thickness, vapor viscosity and phase change.
Moreover, the thermocapillary effect is involved, and two kind of thermal condi-
tions on a wall are considered. Note, that the results of present paper (without
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mathematical derivation) were earlier reported in [7] (for the case of a constant
temperature condition) and in [23] (for a constant heat flux condition).

Discussing applications to boiling, one should stress that our model problem
has "a shortcoming" in that the liquid in the basic state is always at the tempera-

“ture less than the saturation temperature 7. In section 7, a subcooling of liquid

phase was shown to be an important factor which stabilize the system and which
even can prevent the Rayleigh—Taylor instability in the case of thin vapor layer.
The situation with very thin vapor layer below the liquid occurs in the developed
nucleate and transition boiling after the detachment of vapor conglomerates. In
[8] this thin vapor layer is called "dry area". Let us present a description of boil-
ing experiments on macrolayer formation made in [8]. "Just after a large bubble
has detached from the surface of the disk heater, liquid rushing onto the surface
comes into contact with the dry area and the heater surface is speedily covered
with liquid in the form of a very thin liquid layer (macrolayer). The repeatedly
formed macrolayer on the heater evaporates quickly and at CHF most of the
heater surface is dried out. When the liquid rushing onto the surface comes into
contact with dry area, a large amount of nucleation occurs simultaneously..." (see
Figure 1). On the basis of the results obtained in our model problem with taking
into account the mentioned "shortcoming" in the modeling of phase change effect,
we have made in [7] an assumption that a simultaneous nucleation on a dry area
can be connected with the thermocapillary instability of the interface between the
liquid and the vapor residual layer. Such mode of instability has been described in
section 6. Other modes of instability can be driven by the vapor recoil mecha-
nism, by long-range molecula forces due to van der Waals attractions or by the
Rayleigh~Bénard mechanism due to the dependence of liquid density on tempera-
ture. It seems, with instability conception it will be possible to predict such an
important characteristic of macrolayer as the distance between the vapor stems. A
more accurate modeling needs in more experimental information on thermal
conditions above the "dfy area"

For the case of heating from the bottom, important consequences of the performed
analysis are the following. The length scale for the critical lower phase depth,
below which the Rayleigh—Taylor mechanism is affected by thermal effects, is
one and the same for the liquid-gas and liquid-vapor systems, but it depends on
the kind of thermal condition imposed on a wall. When a constant heat flux is
transferred from the wall, the scale is (see formulae (46))

~1/4
8, ~ni"*k"*[(p-p1)go0) (59)
while for the case of constant wall temperature it is defined by
-1/3 |
57~ k"[(p-p1)g] (60)

Further, the obtained results can also be applied to the inverted systems in
which the gas or vapor layer lies above the liquid. Here one has to change the sign
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Figure 10. Sketch for the boiling process on a heated wall.

of the Bond number in general neutral stability conditions (40), (41) and, conse-
quently, in their long wave approximations (44), (45) and (48), (49). The critical
depth below which the thermal effects become dominating also exists and is de-
fined by the same characteristic scales ((59), (60)).

It is believed that the scales (59), (60) can be used to characterize the thickness
of thermal sublayer inside the liquid macrolayer beneath vapor mashrooms in the
developed nucleate and transition boiling regimes (Figure 10). In this sublayer
diffusivity effects are dominating; the heat is transferred by conduction from the
wall through the liquid to the boundaries of vapor stems located inside the
macrolayer. The region of macrolayer attached to the thermal layer can be called
(see [24]) an intermediate layer, as it is still influenced by wall conditions. In this
region the liquid evaporates at the boundaries of vapor stems, the evaporating
mass is transferred along the stems to the above hovering vapor mass. Because the
diameter of vapor stems increases with the approach to the above vapor conglom-
erate, the intermediate region is also influenced by the turbulent vapor flow dy-
namics away from the wall {24]. The existence of the two-phase laminar cell mo-
tion near the wall is due to that the dissipative viscosity effect is still important in
the intermediate region. This effect is active inside the viscous sublayer of
macrolayer (Figure 10). For scale reasons, the thickness of the viscous sublayer

can be measured by A, ~ v}/ 2V 28q or Ay ~ vi" kY %y depénding on the kind of
thermal condition on a wall. One has correspondingly

Bg~pl[(p~p)goo] ", Ar~pl* i (p-p))g

Note, that the proposed consideration of the macrolayer differs from that in the
- critical heat flux theory by Haramura and Katto [3], where the inviscid model for
macrolayer was suggested. Kutateladze [25] was the first to provide a theoretical
formulation for the critical heat flux in boiling. In accordance with his assump-
tion, the boiling crisis has the hydrodynamic nature and is connected with the

]—1/3
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breach of stability of two-phase turbulent flow near the heated wall. We shall
show now (see also [23]) that the formula by Kutateladze for the critical heat flux
on an infinite horizontal plate can be obtained in the framework of the above
consideration of macrolayer under the assumption that the critical heat flux is
connected with the turbulization (chaotization) of the macrolayer and, thus, with a
change of a turbulent flow structure in the region close to the wall. If one assumes
that the turbulization occurs when the Reynolds number for vapor motion in vapor
stems, defined as

Re= -T2 — q = Re,,
pLvi P1 L[(P—Pl)cog]

reaches the critical value then, under the assumption Re . = const, one obtains for
the critical heat flux the formula by Kutateladze:

1/4
Ger = const py *L{(p - py)ogg]

The influence of heater thickness and of its thermal properties on the critical
heat flux can be explained by the fact that the thickness of viscous sublayer de-
pends on these properties. Also, in general case, the critical Reynolds number
Re,, for vapor flow in intermediate region should depend on heater side proper-
ties (roughness), external flow conditions (working pressure, etc.), diameter
(geometry) of vapor stems, the mass transport coefficient X. With strong depend-
ence of the mass transport coefficient on the interface contamination one can ex-
plain a very essential difference [26] of the maximum heat flux values for tap and
distilled water.
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NOMENCLATURE
amplitude of surface deformation, dimensionless
B, C dimensionless amplitudes, egs. (31), (32)
d, depth of liquid, vapor layer thickness, m
D, rate-of-deformation tensors

a
4,
d,
D,
L, dimensionless functions, section 5 (i =1, 2,..., 6)
g

gravity acceleration, m/s?
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Vv, ve
xby’z

Greek Symbols

p

ST’ Sq
Ay, A
A A
P, P1
W, Hy
vV, Vi

n. My
8, 0,

q

o =Qd,
Opr.

Wy, Opy

o

Y, ‘I'l(\l’s"f’l)

Subscripts

1
0
0

earth gravity acceleration, m/s?

dimensionless functions, section 5

normal mass flux across the interface, kg/m?s
coefficients of heat diffusivity, m%/s

mass transport coefficient, kg?/m2s J

latent heat of vaporization, J/kg

dimensionless amplitudes, eq. (31)

molecula weight of vapor, kg/mol

eigenvalue in the problem (20)-(30), dimensionless
unit normal and tangent vectors to the interface
pressures in liquid and vapor phases, N/m?
polynomials (dimensionless), egs. (54), (55), (58)
heat flux, J/m? s

universal gas constant, J/(mol K)

temperatures of phases, K

time, s

dimensionless amplitudes, eq. (31)

velocity vector, m/s

interface velocity, m/s

ratio of amplitude functions (dimensionless), egs. (39), (47)
co-ordinates, m; dimensionalized in section 4

accommodation coefficient, dimensionless
thickness of thermal sublayer, m

thickness of viscous sublayer, m

thermal conductivities, J/(m s K)

liquid and vapor densities, kg/m?

specific chemical potentials, J/kg

kinematic viscosities, m2/s

dynamic viscosities, N s/m?

amplitudes of temperature perturbation, dimensionless
surface tension coefficient, N/m

temperature coefficient of surface tension, N/(m K)
wave number, m!

wave number, dimensionless

critical wave number for pure Rayleigh—~Taylor instability, dimensionless

positions of asymptote, dimensionless
interface level, m

stream functions, m?/s (dimensionless)

vapor
at unperturbed interface
at earth condition

29
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T under constant wall temperature
q under constant heat flux on the wall
w wall
e due to variation of equilibrium part of surface temperature
n due to variation of nonequilibrium part of surface temperature
* ratio of liquid parameter to gas parameter
s at saturation curve
Superscripts

0 basic state

eq quasi-equilibrium limit
Criteria

Gy =(p-pi)gdi/(nk)  gravity parameter

G, = (p—p,)o0gd; / ( nsz) gravity parameter

N, =nk /(ood,) crispation group

N, = (p—p])gdlz/o'o Bond number

Ny = ctqd,2 / (nlk,kl) Marangoni number for vapor phase

Pr=v,/k Prandtl number

Q=M(T, -T,)/(pikL) Jakob modified number

Re=g5, / (p,Lvl) Reynolds number

s. =0,T/(pLd)) thermocapillary parameter

s, =0Ty / (KOLZd]) thermocapillary parameter

o= O'Od] KoL / ( p0,.Ty) phase change influence on thermocapillarity number

Te = T(')llvl/(pledlz)a

T, = THA, / (K(,de,) surface variation of temperature numbers
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