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Models have been developed!-? for the phase transition in
a system which consists of an elastic solid phase transition in a
system which consists of an elastic solid phase and a melt. In
Refs. .1 and 2 the conditions for heterogeneous phase equilibri-
um were studied under isothermal conditions. In Ref. 2 the
problem of the stability of isothermal equilibrium was studied
for a nonlinear elastic material with a liquid melt.

In Ref. 3 a nonisothermal, spherically symmetric problem
was studied for the solidification of a melted sphere, cooled
from the outside under conditions of zero gravity. It was
shown that the stresses which arise due to the change in densi-
ty of the material on solidification have a significant impact on
the heat transfer and on the movement of the boundary of the
solid shell. A mathematical model was formulated there. In it
the behavior of the material in the solid phase was described
by the equations for isotropic quasistatic thermoelastoplasticity.
Convective motion in the liquid core was not considered. The
heat transport equations for the liquid and solid phase were
united using the Stefan condition, obtained’ from the general
conditions at a strong discontinuity. This condition takes into
account the surface forces in the energy balance at the crystal-
lization front. It was shown that when the crystallization front
moves toward the center of the sphere, the pressure in the
liquid phase rises in absolute value, which leads to a signifi-
cant slowing of its rate of motion in comparison with the
purely thermal problem of Stefan.

At some point in time in the process, the intensity of the
tangential stresses on the crystallization front reach the flow
limit, and a region of plastic deformation arises at the front.
With time, the boundary r = Cy(f) between the elastic and
plastic region shifts away from the crystallization front, r =
So(?), toward the outer boundary of the sphere, R = Ry(?).
Therefore, the crystallization process proceeds through three
stages as time progresses. In the first stage, all of the solid
phase is in the elastic state. In the second stage, the region
So(t) < r < Cy(#) is in the plastic state, while the region Co(¢)
< r < Ry(») is elastic. In the third stage, all of the solid shell
resides in the plastic state.

In the present work we have analyzed the problem of
small perturbations in the spherically symmetric solution for ail
three of these stages. the main result is the demonstration of a
bifurcation of this solution, which is treated as an instability of
the quasiequilibrium state of the solid phase. It is shown that
for the first two stages just the thermoplastic stresses lead to
the bifurcation of the fundamental, spherically symmetric
solution.
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We shall consider a perturbation of the spherically sym-
metric solution for the crystallization of a liquid sphere. We
assume that the outer surface of the sphere is cooled in spher-
ically symmetric Yashion. Then, as the solid phase begins to
form, the spherical symmetry of the outer ‘surface is not de-
stroyed because of capillary forces. The behavior of the
material in the solid phase is described by the equations for
uncoupled quasistatic thermoelastoplasticity. When S(3, ¢, )
< r < R(¥, ¢, t), we have

Ty

Evah X1AT,, ?: v;Pl'=0. )

In the liquid phase 0 < r < S(8, ¢, £) we have the relations

aT,

P Py = -p(d)l. 2

= X247,

Here Ty, T», X1, and X, are the temperatures and thermal
diffusivities of the solid and liquid phases; I is the unit tensor;
A is the Laplacian operator; P; is the stress tensor with the
physical components g, in the solid phase; P,/ are the con-
travariant components of the tensor Py; and p(f) is the pressure
in the liquid phase, determined from the solution itself. In the
elastic region C(8, ¢, f) < r < R(J, ¢, t) the Jamail —Neu-
mann law is valid.

In the plastic region S(3, ¢, 1) < r < C(J, ¢, #) the
plasticity condition of Tresk applies:

(Oxk —0—23K) (on—~0—-2/3K)=0%,, k#L 3)

where o0 = (0, + 033 + 0,,)/3. We assume that the flow
limit K is independent of temperature.

At the crystallization front r = S(&, ¢, f) we impose a
continuity condition on the tangential and normal components
of the stress vector, a condition for local thermodynamic phase
equilibrium, and condition of the Stefan type:

ngPing=-p(t), asPy —(asPiag)ag=0, T\ =T1=T,,
P1—p
(p,/\—‘ zp lor)D"‘s=()‘xVTx—xszz)'ns.
1
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Ve |—, , — . “
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At the outer surface r = R(J, ¢, f) we impose the conditions

U=R-—R(o), nRP;nR=0, (5)

ng P, —(nRP,nR)nR =0, T;=( ~F()T,.
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In the expressions (4) and (5), A is the latent heat of crystal-
lization; p1, A}, py, and A, are the densities and thermal con-
ductivities of the solid and liquid phases; D is the velocity
vector for the crystallization front; F(f) > 0 is a function of
time determined by the cooling law; and Ty is the crystalliza-
tion temperature. The vectors ng and ny are, respectively, the
unit vectors normal to the surfaces r = § and r = R, and R,
is the initial radius of the liquid sphere.

In (5) the equality of the displacement vector u to the
difference of the vectors r = R(3, ¢, f) and Rg) = (R(O), 0,
0) follows from the assumption that in the distorted phase the
particles which lie on the outer surface r = R(d, ¢, £) remain
on that surface. The second and third conditions in (5) indicate
that the surface r = R(8, ¢, ?) is free of stress and is isother-
mal at all times.

If an elastoplastic transition arises, then at this boundary
we consider only continuity conditions for the components of
the stress tensor, since the problem of plasticity under con-
dition (3) is solvable in terms of the stress. In addition to Egs.
(1)-(5), we add the condition for conservation of the total mass
of the material and the initial conditions, as presented in Ref.
3. Numerical calculations were performed, beginning with a
small thickness for the solid shell, determined from the initial
asymptote for the main solution. The initial temperature distri-
bution in the liquid sphere is assumed to be known.

STABILITY OF THE SPHERICAL SOLID PHASE

We shall seek a solution of the problem (1)-(5) in the
form
u=vl(, N+rau'(, 9,00, o= ofi + ao;,.(r, 9,0 1),
R=Ro(D+aR (3, 0,1), S=5Sp()+aS' (3,90,
T,=T°¢, )+ aT}(r, 9,0, 1).

where the functions with zero indices are those constructed in
Ref. 3 as solutions of the problem (1)-(5) one-dimensional in
the spatial coordinate, and o is a small quantity. Linearizing
the equations of equilibrium and thermal conductivity (1) and
(2), the conditions (3)-(5), and the mass conservation condition
with respect to the main solution 1,9, T1%, T,%, Ry, S, and py,
we obtain equations for the small perturbations.

We shall consider quasistationary perturbation, with a
time dependence which is parametric. We impose the quasis-
tationarity condition because we are not studying the evolution
of the perturbations but rather the possibility of loss of stability
of the solid phase, in a state of quasistatic equilibrium.

From the linearized boundary conditions at the outer
surface r = Ry(Z), we obtain

0
b+ 2 g g, (6).
r
do? o OR,
Ly —Z R =0; ol —— —- =0
oty 7 T Ry 89 @)
1 03 aRl _
ar‘a - . T Y
R:sind 3¢
dr? ®

T+ — R, =0,
dr
and at the crystallization front r = Su(?):
do? % —a? 4S5,

r
$,=0, oy —
ar ! re Sa a9

ol + = 0,
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Clearly, the presence of the phase boundary significantly dif-
ferentiates this problem from that of the thermal stability of a
body under the influence of a load, which is studied in elas-
ticity theory.

For perturbations of the main equilibrium state of the
elastic solid phase the temperature at the perturbed front must
remain equal to the temperature of crystallization. If there is
no perturbation of the temperature profile, then the boundary
conditions (8) and (10) imply directly that Ry = §; = 0.
Consequently, no elastic instability can arise: The problem of
small perturbations for the displacement field has only a trivial
solution. Therefore, the problem we are considering does not
have any analogy with that studied in Ref. 4, which had to do
with the stability of an elastic spherical shell, under various
uniform pressures on its inner and outer surfaces.

If at some moment of time there appear branching solu-
tion, then the perturbation of the displacements may grow with
time, since the pressure drop at the surface of the solid phase
increases during the solidification process.? In this sense, it is
legitimate to speak of the loss of stability of the growing solid
phase.

In the problem of the small perturbations we shall repre-
sent the temperature profile as a series of spherical harmonics

of degree n:

n
I PM(cos9) (o cos g+ By sin ).

m =0

Y, =

where P,(cos ¥) is the associated Legendre polynomial of
order m. The solution of the displacements in the elastic region
of the solid phase is also obtained, using the ideas of Panko-
vich and Neiber,5 as a series in Y,, dY,/39, and (sind)~!-
dY,/d¢, whose coefficients are determined from the boundary
conditions.

The coefficients of the series depend parametrically on
time are independent of m. A perturbation with n = 1 corre-
sponds to a displacement of the crystallizing sphere which does
not distort the spherical surface. Therefore, we shall not con-
sider such a perturbation. A perturbation for n > 2 automati-
cally satisfies the mass conservation law, and in order to find
the series coefficients with n = 2, it is sufficient to require
that Eqs. (6)-(11) be satisfied. For a given main solution,
when the determinant A of this system is set to zero, we find a
critical thickness for the growing shell, at which a family of
(2n + 1) parametric solutions of order n emerge from the
main solution. These solutions depend on the arbitrary param-
eters a,™, B, form =0, ..., n.

A numerical study of the determinant A was performed
forn < 20, and 0 < y < 1, where ¥ is the ratio of g to Ry,
The material parameters correspond to those of silicon and
copper. The initial radius Ry, was varied between 1 and 10
cm. The rate of cooling at the outer surface was varied be-
tween 1°C/min and 1°C/s. It was shown that in all cases the
determinant A may take on null values in the range 0 < vy <
1 only for n = 3, 5. For n = 5 the critical point v, is close
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to the right side of the segment (0, 1). Consequently, the bi-
furcation for n = 5 occurs earlier. The value is v, = 0.8 for
the two materials, and is virtually independent of the rate of
cooling of the sample.

Since as stability is lost (when y > +,) the spherically
symmetric solution in the solid phase exhibits development of
a plastic zone Cy < r < S, in order to determine the small
perturbation using the plasticity condition of Tresk (3), we
obtain an equation which has a solution in the form of a series
in spherical harmonics Y,. At the boundary r = S, the con-
ditions for the stress (9) remain unchanged, while at the boun-
dary r = C, there is an additional condition for the stress.
Substituting the elastoplastic solution into the corresponding
boundary conditions, we obtain for each n a system of twelve
homogeneous linear equation for twelve unknowns. Numerical
calculations for the "elastoplastic* determinant (n = 2) showed
that for n = 3.5 it does not go to zero for 0 < y < 1. Forn
= 3.5 its behavior is analogous to that of the determinant for
the elastic solution, and v, = 0.8.

We shall ow consider the solidification process, beginning
at the time #«, at which the entire solid phase enters the plastic
state. The four boundary conditions on the stresses (7) and (9)
enable us to separate the problem for finding 0,1, os!, 0!,
o', 0,,!, and ag,! from the temperature-dependence prob-
lem. For a flow limit K which is constant the temperature re-
gime does not influence the elastic stability of the quasiequilib-
rium state of the solid phase. Substituting the plastic solution
into the boundary conditions, we obtain four homogeneous
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algebraic equations relative to four unknowns. Analysis of the
determinant for this system showed that the earlier the entire
solid phase enters the plastic state, the larger n, is the order
of the spherical harmonics which enter the solution). In experi-
ments on the crystallization of spherical samples,® apparently,
this situation has been realized. Close to the crystallization
point the flow limit is ~ 10~SE, where E is the Young’s mod-
ulus.” Therefore, even at small thickness the solid phase be-
comes entirely plastic.3 Estimates show that the branching
solution will be of very high order, with n,, ~ 100-150. Such
a perturbation leaves the sample surface nearly spherical, cre-
ating a multicellular structure in the bulk. This result agrees
with the experimental data reported in Ref. 6.
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